TT1

INGENIEURBURO FUR
TECHNOLOGIE TRANSFER
DIPL.-ING. B. P SCHULZ-HEISE

Training Manual

STEP® 5 with S5 for Windows®
Basic Training

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

The training documentation is for the personal use of the training participants only.

The duplication of the training documentation for not licensed purposes, the
passing on, utilization and communication of the contents to third parties is not
permitted.

Offense obliges to damage substitute.
All rights remain at TTI, Peter Schulz-Heise.

The software made available during the training class may be taken neither, nor be
copied all or part or be made in other, not licensed manner, usable.

TTI Ingenieurbiro fur
Technologie Transfer
Dipl. Ing. B. Peter Schulz-Heise

Stadtring 207
64720 Michelstadt, Germany

Tel.: 06061 3382 Home page: TTintl.com
Fax: 06061 71162 E-Mail: PSH@TTIntl.com

Simatic, STEP® 5, STEP® 7, S7-200®, S7-300®, S7-400® and GRAPH® 5 are registered trademarks of Siemens AG,
Munchen and Berlin.. Picture Source: "© Siemens AG 2002, All rights reserved"
Windows™, Windows NT™ are trademarks of the Microsoft® Corporation in the USA and/or other countries.
InTouch® and Wonderware® are registered trademarks of the Wonderware Corporation.
Product names are trademarks of their owners.
I —————————
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013

Table of Contents Page 1

Table of Contents

Table of CONENTS ... 1
1 Basic S5 Programmingccccceiiieiieeiiiiieeeeeiiie e e e e 1-1
1.1 Methods of Representationccccccceeeiieeeeiiveeiiiee e, 1-1
Ladder DIagramocuueiiiiieeeee et a e 1-1

Ladder diagram representation on the monitorcccoccveeeriiieeeiinnens. 1-7

Symbolic Programming...........eeooiiiiioiiiiee e 1-8

StatemMeENt LISt (STL) .cceeeiioiiiieiiee e e e e et e e e e 1-9

Structure of @ StAtEMENTeviiiiii e 1-9

Function Block Call (STL presentation)..........c.cccveevrieeeenniereennieee e 1-10

Control System FIOWCHAIocvviiiiiiiei e 1-13

Calling a FUNCtion BIOCKcoviiiiiiiiiiiic e 1-16

1.2 Structure of the Application Program........ccccccceeeeieiiiiieeeininnnnnn. 1-17
BIOCKS ...ttt 1-17

Organization DIOCKS (OBS)......cuuiiiiiiiiiiiiiiee e 1-18

Program bIOCKS (PBS).......cuutiiiiiiieiiiee et 1-18

Function bIOCKS (FBS, FXS) ..cciiiiiiiiiiiiiie e 1-18

Sequence BIOCKS (SBS)cuviiiiiiiii e 1-18

Data blOCKS (DBS, DXS) ...utiiiieiiiiiiiiiieiee ettt 1-19

1.3 SBOMENT e 1-19
1.4 PLC Program StrUCTUIES........ccoiiiiiiiiiiiie et 1-20
1.5 Linear Programscooouiiiiiiiie et e e e 1-20
1.6 Partitioned Programeeeeueemeeemmeiiiiiiieieeneeninneineeenenneee. 1-21
1.7 Structured ProgramsScccceeeeeeeeeeeeiiiieee e e ee e e e e e 1-22
1.8 Example of a program StruCturecccccueeeememmmeimmnmneinnnnnnnnnns 1-24
1.9 Cyclic Program ProCesSingccccuuiiiiiieeeieeeeiieee e 1-26
The Cyclic PLC Program EXECULIONcoiiiiiiiiiiiiiieie e eeiiiiee e 1-28

O O o O Y = 1 T 1 o PP 1-29
RESTART OB’S ..ttt 1-29

Cold ReStart ROULINGccoiuiiiiiiiiie e 1-29

Restart Characteristics and Cyclic Operation............occcvvvvvereeeieccviennnnn. 1-31

1.11 Cyclic Program ProCesSiNgcccuuuuiiiiiieeeeeiiiiiiiee e e e eeeeeiinnnnns 1-32
The Cyclic PLC Program EXECULIONcceviiiiiiiiiiiieeee e ciiieeee e e e e s 1-34

1.12 Organization Blocks for Interrupt-Driven Program Execution 1-35
Non-Cyclic Program EXECULION...........cceeeiiiiiiiiiiiiiee e is e e e e e siineee s 1-35

Cyclic Interrupt Organization Blocks (OB10 to OB18)...........ccccceeeeinnnne 1-37

Interrupt Driven Program SCanNingcc.eeevrureeeiniierenniiene e 1-38

Overview of the System Interrupt OBs default settings.........cccccceevvneee 1-38

__|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 2 Table of Contents

Error Handling Organization BIOCKS............ccccuiieiieee i 1-38

2 Statement List Instructions StrucCture.........cccccceeeeeeveevinnennnn. 2-1
2.1 STEP 5 OPEIrandSuuuuuuuuuiuiiiiiiiiiiiiiiiiiiiinininesnnnnneennnnnnesneeneeeeeeee 2-4
2.2 Operands, Addressing OVErVIEWccceveeeeeveeeevviiiiieeeeeeeeeeeninnnnn 2-7
Operands AArESSING «...ccoeiiuriiiieie ettt e e e e e e e e ee e e e e e e aaaeees 2-7

Bit Variables (Bit OPerands)ccoucuiiieiiiiieiiiie e 2-9

Byte Variable (Byte OPerands)ccceevrieeeeiiiieee e e e 2-11

Word Variable (Word Operands)coccvvveeeeeeesiiiiiiieieee e cecinineeee e 2-13

High Byte and Low Byte in @ WOrd ... 2-14

Double Word Variable ... 2-15

Byte Order in a Double Word Variable............ccococeiiiiiinieee e, 2-17

Overlapping of Variables..........cccccov i 2-19

2.3 Symbolic Programmingeeeeeeeeeeeemseiiieineeieinnineeenenenenn. 2-21
Symbolic Table FOrmat............oo e 2-21

2.4 BlOCK CallS .o 2-25
Unconditional Calluuiiiiiiii e 2-25

Practice Exercise 2—1; Unconditional Call (JU)cccccovviviiniiineennnn. 2-28

Conditional Call........cooveeiiiciiiii e 2-29

Practice Exercise 2—2; Conditional Call (JC)ccceevvvviiiviireeeeeiiiiiiieeenn. 2-32

Calling Organization BIOCKScooiiuiiiiiiiiei e 2-33

Calling Program BIOCKS...........cooiiiiiiiiiiiiieee e 2-33

Calling Sequence BIOCKS ..o 2-34

Calling FUNCtion BIOCKS..........cuiiiiiiiiiiiiiiice e 2-34

2.5 (2] Vo Yot [= a Lo [(21 =) I 2-35
Block End Unconditional (BEU)coeeeiiiiiiiiiieiiee e 2-37

Practice Exercise 2—3; Conditional Call, BEUcccooeeeeiiinniiiiinneen. 2-38

Block End Conditional (BEC)coiuiiiiiiiiiieiiieee et 2-39

Practice Exercise 2—4; Conditional Call, BECcccoooovvivvvvieeeeeeereeennn, 2-40

3 Bit LOQIC INSTIUCTIONS ..o 3-1
Binary Logical INSrUCIONScuviiiiiiiiiie e 3-1

Combinations of the Logical INStructionscccceeviiiieiiiie e, 3-2

Processing the Result of a Logic Operationccccccoevevviveeeeeeevescivvenennn. 3-2

First SCan iNSTIUCTION.uuiiiiiie e 3-4

Practice Exercise 3—1; Result of the Logic Operation, Status................... 3-6

RLO delimiting.....ceeeieiiiiiie ittt 3-7

RLO delimiting INSIrUCIONSccooiiiiiiiieeee e e 3-7

3.1 Basic Rules of Boolean Algebra..........ccccooviiiiiiiiiiie i, 3-8
ConVersion AND / ORcouiiiiiieiiie ittt 3-8

Conversion OR / ANDuuiiiiiiea e 3-8

Example of a Logical CONNECLIONccooiiiiiiiiiiieiiiee e 3-10

A AND FUNCHON 1.ttt 3-11

Practice Exercise 3—2; Logical ANDcccciiieieeeiiiiiiiiieeece e 3-13

Practice Exercise 3—3; LogiCal ORccooiiiiiiiiiiieiiiiiiieeee e 3-16

NAND FUNCHON ..ttt r e e e e s senbeeee s 3-18

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013

Table of Contents Page 3

NOR FUNCLION ...ttt e s 3-19

Practice Exercise 3—4; Conveyer Belt, Package Height......................... 3-20

AND Defore OR.......ciiiieiie e 3-22

Practice Exercise 3—5; AND before OR..........ccovvvvvieiieiiiiieeieeee e, 3-24

OR DEfOre AND.....oeiiiiiiiiee et e e s e e anes 3-25

Practice Exercise 3—6; OR before AND..........ccccceeeiiniiiiiieeee e, 3-27

Practice Exercise 3—7; Normally Open (NO), Normally Closed (NC)..... 3-28

Converting a relay logic into @ PLC Programcccocveeeiiiieeeniiiieeennnns 3-29

UsSIiNG the LAD EITOrovviiiieee e 3-31

Practice Exercise 3—8; Motor right/left............ccocceeiiiiiii i, 3-35

3.2 NUMDEI SYSTEIMS .o 3-36
DeCiMal SYSLEIM ...oiiiiiiiiiiii e 3-36

Binary NUMDEIScooiiiiiiiiiie e 3-38

Hexadecimal NUMDEISooviiiiiice e 3-39

The link between binary numbers and hexadecimal numbers............... 3-39

BCD NUMDEIS ..ot 3-41

The link between binary, BCD, and hexadecimal numbers.................... 3-41

Practice Exercise 3-9; Seven Segment Displayccccovceveeriiieenninn. 3-44

3.3 Setting / Resetting Bit ADAreSSescoovvvvvvviiiiieeeeeeeeeeieee e 3-47
S — SELINSIIUCHION. ...cciiiiiie it e e 3-47

R — RESELINSLIUCHION ...eeiiiiiiiei it 3-49

RS FlP FIOP e 3-50

SR FHP FIOP et 3-51

Practice Exercise 3—10; LatChc.coevuvuiieiiiiiieeeee e 3-52

G0 N o [0 [1] =T o f o o U 3-53
Positive EAQEe DEeteCHION.......ccccoiiiiiiiieice e 3-54

Negative EAge DeteCtioN.........cooiuviiiiiieeiii i 3-56

Practice Exercise 3—11; Motor ON/OFF, Edge Detection with Latch..... 3-58

4 Timing Functions (Timer) and Counters.............cccccceeeeeeeenn, 4-1
4.1 Timing FUNCtioNS (TIMEI)....cciiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 4-1
TIMer SIgNAIS OVEIVIEW ...t 4-1

ATEA TN IMEIMOIY .ottt et e e s sbee e e 4-2

Enable Timer — FR (FIre8).....cui i 4-5

PUISE TIMET (SP) ceieeiii it a e 4-7

Extended Pulse TiMer (SE)oooiiiiiiiiai e 4-10

ONn-Delay TIMEI (SD)ueiiiiiiiieiiiiee ettt 4-12

Retentive On-Delay TiMer (SS)ccooiiiiiiiiiiieeeiiie e 4-15

Off-Delay TIMEI (SF) ..oco oo 4-17

Selecting the right TIMer.........coo e 4-19

Practice Exercise 4—1; Flashing Lightcccoocviiiiiiinniece e, 4-20

Practice Exercise 4-2; Traffic Light..........ccccciiieeiiiieeee e, 4-21

Picture BIOCK; EdItOrcocvvieeiiiiiee it 4-23

Picture Block; Status DiSplay........c.eeeeiiiiiiiiiiiiieieeee e 4-24

4.2 Counter INSTIUCTIONS ...ooiiiiiiiiie e 4-25
Enable Counter FR (FIre@)ccou it 4-25

Set Counter S (Preset COUNLET)cooiiiieiiiiiieeerieiee e 4-28

__|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 4 Table of Contents

Load Current Counter Value (L) into ACCU 1 in Binary Form................ 4-28

Load Current Counter Value (LC) into ACCU 1 in BCD Form................ 4-30

COoUNLEE UP (CU) ittt e e e e 4-31

Counter DOWN (CD)....cuvvieeiiiiiiee ettt e e 4-32

Practice EXercise 4—3; COUNENccuueieiiiieeeiiiiee e esiiee et 4-34

5 Function Blocks (FB; FX) and Data Blocks (DB; DX).......... 5-1
5.1 Programming Function BIOCKSuuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiens 5-1
Function Blocks Without Block Parameters..........ccccovvveveiiiiineiiiiene e, 5-2

Function Blocks With Block Parameters..........ccocveveiiiieieiniiine i 5-2

BIOCK Parameters........oocuuuieiiiiieieie et 5-3

Parameter tYPE.....couii it 5-5

(D F= = 0 4V L PP PP PPPPPPPPPPRRE 5-6

Block Parameters (Formal Operands) defined ina FB.........c...cccoevvveeee. 5-8

Calling a Function Block with Parameters (graphic presentation)............ 5-8

Calling a Function Block with Parameters (STL)ocooeeiviiieeiiiieeennae 5-10

5.2 Data@BlOCKS .ooviiiiiiei e 5-11
Calling Data BIOCKSccooiiiiiiiiiic e 5-11

Opening another Data Block in a called BlockK..........ccccccceeeviviiiiienneennn. 5-14

Creating a Data Block (DB, DX)......ccccuuiiiiiiieiiiiiieieeee e 5-15

Changing the Data Word FOrmMatccoovviieeiiiiieeniiiiee e 5-16

Creating a Data Block (DB, DX) automaticallycccceeeviiieeiiiineennas 5-17

Function Block (FB) with Data BIOCK (DB)cccoeeiviiiiiiiiiieeeieee e, 5-19

Practice Exercise 5-1; Hysteresis, Function Block with Data Block...... 5-20

I —————————
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-1

1 Basic S5 Programming

1.1 Methods of Representation

In STEP 5, a task definition can be formulated using three different
methods of representation:

e Ladder diagram (LAD)
o Statement list (STL)
e Control system flowchart (CSF)

The three methods of representation are discussed briefly in the
following subsections.

Ladder Diagram
In ladder diagrams, the control task is defined using symbols similar to
those used in circuit diagrams. Programs can be entered, modified and
documented as ladder diagrams. This method of representation also
enables the output of dynamic status displays during on-line testing.

Symbols used in ladder diagrams

The symbols used in ladder diagrams are similar to those used in circuit
diagrams. They are represented on the screen by unbroken lines and in
printouts by characters from the printer’s standard character font.
Brackets (as per the standard “American” conventions) are used as
symbols for NO and NC contacts, and parentheses as coil symbol for a
contactor or relay:

NO Contact — F— Aqi, circuit diagrams, the “contacts” can

be interconnected both in series and in
parallel. The symbol for the coil is located
at the end of the “rung”

NC Contact ——.-1—

Coil — H

TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-2 Basic S5 Programming Chapter 1

Example: Representing a series connection

55 /57 for Windows® - csf_lad| stl presentation, - [$5 Editor, : PB 1]

W Block Modify Search Insert Presentation Window Help = -
2R |/ 16 e 2 31 (224 | 0|] 10|) ol =)
1 Segment1/7 =] 22 =] e]] aflre] X] bl o] 2] S[D]] £ e
AHD Operation ~
I0.0 I0.1 0 0.0 1
— |} {_H

b’

£ | >

:‘.' Schriungemannal=\SW Basic Training USAExamples Exsrdze/CEF_LAD STL Pressrmtafon 5o PEH.TTI :

The binary logic operations represented in a ladder diagram are
interconnecting structures of, NO and NC contacts in series and parallel
circuits. The coil symbol for a result assignment terminates the rung. It is
thus possible to represent individual set/reset operations and conditional
block calls (except for those relating to function blocks — these are
automatically displayed in Statement List presentation).

A special case is the “connector”, which represents a result assignment
within a logic operation and is identified by the symbol like a coil.

Example: Representing a “connector” in a ladder diagram

§5 /7 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] M=E3
W Block Modify Search Insert Presentation Window Help - g x
. . T F e |
22 |5 16 = 22| £ 122 | B B | || = €2
i Segment2 /7 o] 22| 2]] afwlve] Xl =] 2] 2D] sl
Representing a "Connector" {pos. edge detection) »~
F 20.1 =
I0.2 F 20.1 F 20.0
N " () s
I0.2
L1 R 0—
b
£1)) >
WoiSdhlungemanual=YSTW Basic Training USMExamgles Exerc=e/CSF LAD STL Pressmation =5 PEH.TTI

Complex operations are represented as boxes. A box contains the
symbol identifying the relevant operation. “Rungs” lead to the function
symbol’s inputs from the left, and “rungs” can be connected to the
function symbol’s outputs at the right. “Complex” operations include
set/reset, timer, and counters and compare operations.

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-3

Examples of “complex” operations in ladder diagrams

Set/reset operation:

55 I 57 for, Windows® - csf_lad_stl presentation - [S5 Editor : PB 1]

W Block Modify Search Insert Presentation ‘Window Help E |:|'|
| e | 020 | 220 Bt V10 |7 | P | 2
ﬂ Segment3/7 =] J|J| ﬂ|ﬂ|ﬂ|ﬂ|ﬂ|ﬁ| El i
Setfreset Operation ~
I 0.3 I 0.4 Q0.1 B
{ ¥ i} s
I0.5 I 0.6
{ ¥ i}
ID0.7
{ } R 0—
I 1.0
{ ¥
bs
] >
WS e = S B Traring USMEsmiles EveaemCar LD STL Presena =50 FEHLTTY

W Block Modify Search Insert Presentation ‘Window Help E |:|'|
= 223 |22% | B Bar| A \F?F.‘H\W|\
[Segment6 /7 || 22| =]« x] a]»re] x| o
Timer Operation (Pulse Timer}) ~
T 1 =
I 1.0 I1i.1
I | {1 1 -
KT 500.0 — TW BI —
DE —
I1.2 Q0 0.4
L} R0 {_H
I1.3
I |
s,
] >
WoSchungsmans =S Gemic Tranng USMEampes Execse/CSr LD STL Presemaian s5g PSH, TTI)

= e T s]

T Segment5/7 | =] 2121 =]l t] af+ifref X1 E
Compare operation {(Z1 bigger Z2; F - Fixed Point Walue) ~

IW 2 — Z1 F

= 0 0.3
EF +4711 — &2 Q [j_|
b

23) >
WS e an = STV e Trarning ShExmpes Exerase/CSF LND_STL Presematan =5 PEH.TT]

TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-4 Basic S5 Programming

Counter operation:

Chapter 1

55 /57 for Windows® - csf_lad| stl presentation, - [S$5 Editor, : PB 1]

[ri Block Modify Search Insert Presentation Window Help - 8 X
2|15 1R | 20 20 127 | (B0 | B 1 \Fm....\E\,I
[l Segment 4 /7] 212 =] 4] 4] X]
Counter operation {Upf/Dovmn Counter) ~
C1 =
I1.1 I1.2
|| [} cu
I1.3 I1.4
{ | { | cD
I1.5
|| s
EC 123 — v DU —
DE —
I1.6 Q0.2
I R0 {3
I1.7
1|
1 T
bt
] >
WoiSdhlungemanual=YSTW Basic Training USMExamgles Exerc=e/CSF LAD STL Pressmation =5 PEH.TTI

A function block call can also be called using LAD. S5 for Windows®
automatically switches into STL mode. If you prefer a graphical
presentation you must switch to CSF presentation. A function block call
must be programmed in a separate segment.

The number of the function block is shown within the Block call
instruction, the function block name and the names of the block
parameters (the function block’s “inputs” and “outputs”) are listed below.

§5 / 57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] =13
[ri Block Modify Search Insert Presentation Window Help - 8 X
28 |5 [| 2 20 (27 | B | V|)| P = €2
ﬂ Segment7 /7 = & & ﬂ
Tag | In... | Operand | Comment
;Calling a Function Block e

JU FB 10 =
HAME : MOTORS |
IHY : FW 34
DAT : IW 10
VAL, : KF +500
OH : I 0.0
OFF : I 0.1
LOWw : I 0.2
OUT : QW 2
ERE : FW 36
0K : Q0.0

BE

b
< | »
SarungEmannal=YSSY Bamic Training USAEsmples ExrczeiCEF LAD STL Pressrmafion =5 PSH, TTI|

STEP® 5 S5 for Windows® Training

TTlI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-5

Function Block call, graphical presentation

§5 /57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] M=1E3
W Block Modify Search Insert Presentation ‘Window Help - g x
m m o o 4 k1 0

2B |5] 2|22 20 [12 | B | U0 | 1) | P =)
[Segment7/7 = 22 X el 2 2B s] =]
Calling a Function Block ~

FB 10

MOTORS
FW 34 — IHY ouT — O 2
IV 10 — DAT ERR — FW 36
KF +500 —— WAL 0K — 9 0.0
I 0.0 — OH
I 0.1 — OFF
I 0.2 — LOW
v

< >
WS lungEmaral =\ ST Basic Training USAExamgles Everc=eCEF LAD_ STL Presearmation =5 PEH.TTI

The number of the function block is specified above the box, the function
block name and the names of the block parameters (the function block’s
“‘inputs” and “outputs”) in the box.

A function block call must be programmed in a separate segment.

Even when ladder diagram has been selected as the representation
method, it is still possible to enter basic STEP 5 operations which
cannot be represented in graphic form. To do so, you can switch to STL
presentation any time. This segment can subsequently be entered as
statement list. The system reverts to ladder diagram mode at the
beginning of the next segment.

It is also possible to prevent S5 for Windows® from switching into LAD
mode (if LAD is selected in the “Preference” settings). By entering “STL”
at the beginning of a segment the segment will only be displayed in STL.

§5 / S7 for Windows® - csf_lad_stl presentation - [$5 Editor : PB 10] (=13
W Block Modify Search Insert Presentakion Window Help - a8 x
F T o oy # FLAH. 0
22|)| [| 2 B0 | 270 | (58 | B o |)| =T €
ﬂ Segment 2/ 3 o =) &2 £ ﬂ
Tag | In... | Operand | Comment
;STL Presentation only ~
STL
EA
1] I 1.0
1] I 1.2
)
A
1] I 1.1
1] I 1.3
]
= g 1.0
oo
v
< >
WASChUungEmanusl = SIW Basic Training USAExamoles ExercizeCSF_LAD STL Presertation =50 PSH, TTI

TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-6 Basic S5 Programming Chapter 1

Example for program representation

SEGMENT 1 Series-parallel circuit (1)
§5 /57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 20] M=1E3
W Block Modify Search Insert Presenkation ‘Window Help - g x
. F o 4) 0
2R | 1 e 2 0 (220 | 50| i 10 |17 o = 2|
i Segrment1 /2 =l 2l2] 2]] e X b= 2] 2] O]] £ re
Seriez-parallel circuit {1} ~
I1.0 I1.1 g 1.0 0
|| || L H
I1.2 I1.3
[} ||
st
<l i >
WS = S B Traring DS Esrmies ErerceCar (A0 ST Freseteion =3 [PSH TT]
SEGMENT 2 Series-parallel circuit (2)
[m Block Modify Search Insert Presentation ‘Window Help - |:|'|
. . I ¢ F.5H, 0
2 | 113 e 2 0 220 | 280 |] 10 {170 o =< €|
1 Segment 2 /2 = ZE 2l 2] el ilvef XA b o 2] 2[D] "]] e
Series-parallel circuit (2} ~
I 1.4 I1.5 01i.7 b
[} || —H
I1.6 I1.7
[} ||
b
] >
WoASHUrEmara =S5 Basic Traning USA Exmples Exerc=CSF LAD STL Presamaion =5p PSH, TTI

The "rungs" are represented in segments. The segments are numbered
automatically. The first line is reserved to hold the segment header. The
segment header may be up to 60 characters (selected in the
“Preference” settings, miscellaneous tab).

To enter a segment commentary of arbitrary length the “Comments
display Window must be opened (Presentation Menu, Display
Comments).

A new segment must be created for each “rung”. A segment may
contain only one “rung”.

A block may comprise no more than 255 segments and no more than
4091 statements.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-7

Ladder diagram representation on the monitor
The screen space for ladder diagrams is subdivided into up to eight (8)
columns and up to thirty (30) lines. The logic operation is shown in the
first seven columns, the outputs in the eighth column.

The contacts for a logic operation are drawn at the left screen margin
(“rung”) or at a branch.

Each field contains a contact symbol and the associated operand
identifier. The vertical links between the contacts (branches) are shown
at the boundaries between the fields. Several fields may be required for
“‘complex” function symbols.

Segment Representation on the monitor:

55 /57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 20] [E3
ﬂ" Elock Modify Search Insert Presentation Window Help - 8 x
¢ i g s HidH, g
22| | [| 2 20 | 22 | 0 | i |) =] 22
<l Segment 4/ 4 |l 212 el] sl sl XE 2l = 2] 21D e
fegment header up to 60 Characters -~
F 33.0
I 5.0 I5.1
{1 {f g
I53.3
{1
I 5.4 F 33.7 T 5 I 5.3 F 33.6 0 5.0
{1 {f R 9 {1 {1 {1 _H
F 33.4
{ |
L]
L
I5.5 F 33.5
{ {
F 19.4
{
F 21.1 5.7
I 1
1 [
F 10.7
{
F 20.0
{ ¥
v
< >
riirgenan =S Bamc Traning [ShEGres EvscseCSr LAD_STL Presstaiaisi [PSH, TT] Wakted

The screen can be rolled up. A rung (for an output, for instance) may
comprise as many as 30 (ladder diagram) lines.

A “rung” corresponds to a “segment”.

__|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-8 Basic S5 Programming Chapter 1

Symbolic Programming
Segment commentary and symbolic programming in a ladder diagram

55 157 for Windows® - csf_lad_stl presentation symbols - [S5 Editor : PB 10] [=1(E3]
lm Black Modify Search Insert Presentation Window Help - | X
‘ \! ““WW % i :D-_.{l'| . TH' ‘ || |||||”m‘ ’ ‘
il Segment1/1 Bl 2] =] «] t] 4] re] X] 2] 4o)] = JJ@JJJJJ
This window is used to enter and to display a segment commentary of arbitrary length.
To open the segment commentary window use the command “Display Comments’" from the
Presentation Menu. ¥You may use the cut and past operations vour Windows
operation system provides. w
< >
Symholic Operants; Segment comment disply; Symholic Table A
F 33.0
“on ors
[| | s
STOP
[
Left S5tep3 Delay Right S5tep2 Hotor
[| | R Q | | [L
Hanual
1
1 r
Count
1
STOP Stepl
| 11
1 I 1 I
w
< >
Operand Symbol Comment
I 5. This switch turns the Machine O -
I 5.1 0££ This switch turns the Machine 0ff
I 5.3 Right This switch is used for right movements b
< >
WSt urgEmar e = ST B Traning USMExmpes_ExecodCSF_LAD_STL Presethon Symbos =50 FSH,TTH)

Symbolic operands (such as -On) may be used in place of absolute
operand identifiers and parameters (such as | 5.0). An assignment list
(Symbolic Table) must be generated, however, before symbolic
operands can be used in the program.

To display symbolic operands the command “Symbolic Operands” from
the Presentation Menu must be selected. To display the “Symbolic
Table below the segment the command “Display Symbolic Table” from
the Presentation Menu must be selected. This window displays the
Operands in their absolute and symbolic form as well as an assigned
comment.

Whenever an operand is marked in the segment the corresponding line
is displayed in the Symbolic Table window and the line has also a blue
background.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-9

Statement List (STL)
In a statement list, the control task is described in form of a list using
mnemonic (easily assimilated) abbreviations. The programming
language is based on a standard for programmable controllers.

The program can be entered, modified and documented as statement
list. This method of representation also enables dynamic status displays
during on-line testing.

All operations available in the programming language (basic operations,
supplementary operations and system operations) can be represented
in statement list format.

Structure of a statement
A STEP 5 statement is the smallest independent unit of a program, and
represents a processor directive. A statement comprises an operation
code (such as A for the AND operation) and an operand (for instance
I 1.7); an operand consists of an identifier (e.g. | for input) and a
parameter (e.g. 1.7 for the 7th bit in the 1st byte).

Example: Representing an AND operation

§5 1 §7 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] ['_I['EIFSTI

l]'i Block ~Modify Search Insert Presentation window Help
it | |m.....|E[|9|

= =|:|-_.-[|-| .
ﬂ Segment /7 _|_| JJ ﬂ

Tag | Instruction | Operand | Comment
:AND Operation L
F: I 0.0
A I 0.1
= 0 0.0
La 8 W
< ¥

Schulungsrnanual =S Basic Traning USAExsmples Everc=aCSF LAD STL Preseriafion = PEH, TT | Mackfed

“Complex” operations for which there are special symbols in the graphic
representation modes have no special symbols in a statement list; they
are written in the same manner as any other statement.

TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-10 Basic S5 Programming Chapter 1

Function Block Call (STL presentation)
A function block call is also represented in list form, and can be
programmed together with other statements, whereby the function
block’s inputs and outputs (i.e. the block parameters) immediately follow
the call statement.

§5 7 57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] M=
I]i Block, Modify Search Insert Presentation Window Help - 8 X
ﬂ Segment 7/ 7 =] 2| 2] ﬂ
Tag | Instruction | Operand | Comment
:Calling a Function Block P
JU FB 10
HAME: : HMOTORS
IHW : F¥ 34
DAT : I 10
VAL : KF +300
oH I 0.0
OFF : I 0.1
LOW : I 0.2
ouT : o 2
ERR : FW¥ 36
(1) Qg 0.0
BE
W
< >
WS ulurgEmanual=\ ST Basic Training USAExamples Exerc==/C5F_ LAD STL Pressrtafon =5p PEH, TTI | Mockfied

All basic operations of the STEP 5 programming language, which can
be represented in graphic form, can also be inputted as a statement list
and outputted as control system flowchart or ladder diagram.

An input, however, certain conventions must be observed as regards
auxiliary statements (such as “NOP 0”). Segments, which cannot be
represented in graphic form, are always outputted as statement list.

In STL Presentation “rungs” do not have to be in separate segments.
Several “rungs” can be combined into a segment. However such a
combination of “rungs” in one segment cannot be displayed in a graphic
mode (LAD, CSF presentation.

Note:
In STL Presentation there are no rules how to construct a segment. It is

wise not to put to many lines of STL instructions into one segment.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-11

Example for program representation

§$5 I 57 for Windows® - csf_lad_stl presentation - [$5 Editor : PB 11]

W Elock Modify Search Insert Presentation ‘Window Help - 8 x
Tl Segment1 /7 o 2|2 =
Tag | Instruction | Operand | Comment
;AHD Operation s

F. % I 0.0

F. I 0.1

= g 0.0

;sRepresenting a "Comnnector" (pos. edyge detection)

Af

F.% I 0.2

AH F 20.1

= F 20.0

F.% F 20.0

]

5 F 20.1

AH I 0.2

R F 20.1

HOP L1}

;Setfreset Operation

F. o.

F.% I 0.4

1]

F. I o.5

F.% I 0.6

5 Qg 0.1

1} I o.7

1] I 1.0

R Qg 0.1

HOP L1}

dehk 3
< >
WS rgE e =T B Traring DSmEampies Exrasen st LD _STL Presertibon =50 PEH. TT]] Wockted

The logic operations are combined into segments. Several logic
operations can be represented in each segment. The segments are
numbered automatically.

A 60-character segment header may be specified in the fist line after the
semicolon. Comments may be inserted in separate lines. Each comment
line must start with a semicolon.

Statement Comments may also be inserted after the STL command,
separated by a semicolon.

The segment end statement (“ *** “) and blank lines are separate
statements.

A segment commentary of arbitrary length may be written between the
network header and the first statement to complete the documentation.

A block may comprise no more than 255 segments. As many as 256
MCS5 statements may be programmed in each segment. A block is
restricted to no more than 4091 statements.

__|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-12 Basic S5 Programming Chapter 1

Representation on the monitor

55 I 57 for Windows® - csf_lad| stl presentation symbols - [S5 Editor : PB 10]

Ml Block Modify Search Insert Presentakion Window Help -9 x
. . o / BSH 0

2|5 55 | 20 B0 87 | BB B 0|)P = 522
- Segment1/1 22|
This window is used to enter and to display a segment commentary of arbitrary length. 4
To open the segment commentary window use the command “Display Comments® from the
Presentation Menu. You may use the cut and past operations your Windows
operation system provides. l
< >
Tag Instruction | Operand Comment
;Symbolic Operants;: Segment comment disply: Symbolic Table Y

Af

F. 9 I 5.0 This switch turns the Machine 0On

F. 9 I 5.1 This switch turns the Machine 0£f

1} I bh.5 This switch stops the Machine

s F 33.0 Auto mode flag

af

1} I 5.4 This switch is used for left morvrements

1] F 33.4 Manmual mode flag

OoH C 5 Ovrerflow counter

¥

F. 9 F 33.7 Step 3 of segquence 6

1}

F.9 I bh.5 This switch stops the Machine

F.9 F 33.5 Step 1 of sequence 6

R F 33.0 Auto mode flag

F.9 F 33.0 Auto mode flag

¥

F. 9 T 5 Delay timer

F. 9 I 5.3 This switch is used for right movements

AH F 33.6 Step 2 of segquence 6

= g 5.0 This is the ountput to control the motor

BE ~
< >
Operand Symbol Comment
I 5. This switch turnz the Machine 0O La
I 5.1 0ff This switch turns the Machine 0£f
I 5.3 Right Thi=s =s=witch is used for right movements w
< >
WoSHhuungsmanual=' S Basic Traning USNEdcmples Exerc=eCSF_LAD STL Presertaion Syrmbals =50 PSH, TTI)

The STEP 5 statement begins with the operation code, followed by the
operand identifier and the parameter (both of which are left-aligned). In
function blocks, a symbolic entry point (jJump label — Tag) may be written
at the left of the colon.

To display the “Symbolic Table below the segment the command
“Display Symbolic Table” from the Presentation Menu must be selected.
This window displays the Operands in their absolute and symbolic form
as well as an assigned comment.

Whenever an operand is marked in the segment the corresponding line
is displayed in the Symbolic Table window and the line has also a blue

background.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-13

Control System Flowchart
A control system flowchart uses symbols to describe the control task.
The program can be input, modified and documented as control system
flowchart. This method of representation also enables the output of
dynamic status displays during on-line testing.

Symbols used in control system flowcharts

The basic symbol used in control system flowcharts is the rectangular
box. On the monitor screen unbroken lines form these boxes while
standard characters are used to represent them in printouts. The symbol
in a box identifies the operation, which the box represents. The inputs
are shown at the left, the outputs at the right of the function symbol.

Example: Representing an AND operation

55157 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1]

ﬂ“ Block Modify Search Insert Presentation ‘Window Help
'ml | ||.'|||||”E‘ !I |

IR | =) | =] 22 B | 22 | B B
T Segment1/3 = Bla AxI=d el 2] 2@] 5] =] =

AHD Operation

WS uluncsrmanual=\STW Basic Traring USAExenples Exera=elCSF LAD STL Presseration =5p PEH, TTI

The binary logic operations represented in control system flowcharts are
combinations of AND and OR operations.

A result assignment at the right of a logic operation always terminates
that logic operation (see above), thus making it possible to represent
individual set/reset operations and conditional block calls (except for
those relating to function blocks).

In addition to logic operations AND and OR, there are also “complex”
operations, i.e. set/reset, timer, counter and compare operations. These
operations are also represented by boxes. A symbol in each box
identifies the relevant operation. The inputs for these operations are
shown at the left, the outputs at the right of the boxes.

A special case is the “connector”, which represents a result assignment
within a logic operation and is identified by a “=" symbol in the box.

TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-14 Basic S5 Programming Chapter 1

Example: Representing a “connector” in a control system flowchart

55 /57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1]

[fil Block mModify Search Insert Presentation ‘Window Help k,
B | (B 15 7| 20 0. 27 B B8k | mi [175 e =T <=
T Segment2/2 22 x4 JIJIJIJI@JIJIJJ@IJI
Representing a "Connector" {pos. edge detection) ~
I 0.9 —1 F 20.0 F 20.1 —
F 20.1 — = — 5
I 0.2 —H R 0 —

s

] >
Facrulungsmanual=' S5 Basic Training USAMEcamples Exarc=eCSF LAD STL Presertaion s5p PSH, TTI

Examples for representing “complex” operations in a control system
flowchart.

Set/reset operation

[l S5 7 S7 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1] =13
[m Elock Modify Search Insert Presentation \Window Help - 8 x
2R || 5 a2 220 20 | 27 | B0 B | I | | e =
[l Segment3/3 2 AA AXl el 2] 2o)] re] =
Setfreset Operation ~
I 0.3 — &
I 0.4 — =1
I 0.5 — & 90.1
T 0.6 — 5

I 0.7 — =1

I1.0 — E 0 —

b
] >
Facrulungsmanual=' S5 Basic Training USAMEcamples Exarc=eCSF LAD STL Presertaion s5p PSH, TTI

[fil Block mModify Search Insert Presentation ‘Window Help - a
B | (B 1E 7| 2 3. 27 B 58| 0|15 [P =T <=
T Segment5 /5 =] A2 XA el 2] (@] =] -]
Compare operation {(Z1 bhigger Z2: F - Fixed Point Value) -~
IWw 2 — %1 F
=

EKF +4711 — Z2 0 — = Q 0.3

s
<_ | 2

Facrulungsmanual=' S5 Basic Training USAMEcamples Exarc=eCSF LAD STL Presertaion s5p PSH, TTI

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-15

Timer operation

§5 I 57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1]

[l Block mModify Search Insert Presentation Window Help — ||& |
| | 25 2 | 27| (20 | ot ml | IW\E\ QI
[l Segment b /B
Timer Operation (Pulse Timer) .
I1.0 — =& LI 0
I1.1 — il =
KT 5300.0 — TW BI [—
DE [—
I 1.2 — =1
I1.3 — R 1} = g o.4
b
] >
echulurgsmarual=' S5 Basic Traning USAExrmples ExerasetCSF_LAD STL Presamtafion =5 PEH,TTI)

Counter operation

§5 I 57 for Windows® - csf_lad_stl presentation - [S5 Editor : PB 1]

[l Block mModify Search Insert Presentation Window Help — ||& |
| | 25 2 | 27| (20 | ot m| | IFF.’H\E\ ,|
[l Segmentd /5
Counter operation (Up/Down Counter) -~
T1.1 — =& €1 0
I 1.2 — cu
I1.3 — k&
I 1.4 — cD
I 1.5 — 5
KC 123 — W DU —
DE —
I1.6 — =1
I1.7 — R 0 = Q0.2
b/
<) >
VASchulungsmanual=SSW Basic Traning USAEcmples Exera=eCSF_LAD STL Presemtafion =5 PSH, TTI)

__|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-16 Basic S5 Programming Chapter 1

Calling a Function Block
A function block call can also be represented graphically.

To do so, the number of the function block is specified above the box
and the function block name and the names of the block parameters
(the function block’s “inputs” and “outputs”) in the box.

A function block call must be programmed in a separate segment.

Representing a function block call

55 /57 for Windows® - csf_lad| stl presentation, - [$5 Editor, : PB 1]

W Block Modify Search Insert Presentation Window Help =
m m o 4 1.5H, 0

||] | 2 e | 22 | 0 i | |] 2
B Segment7/7 | 212 X sl 2l 2@ sl =]
Calling a Function Block -

FB 10

MOTORS
Y 34 — IHW ouT — oW 2
I 10 — DAT ERR — FW 36
KF +500 —— WAL 0K — 9 0.0
I 0.0 — OH
ID.1 — OFF
I 0.2 — LOW
w

< >
WS iungemarual =\ ST Besic Training USMEssmples Exera=s/CSF LAD STL Pressration =S PSH, TTI

Even when the control system flowchart has been selected as
representation method, it is still possible to enter basic STEP 5
operations which cannot be represented in graphic form. To do so, you
can switch to STL presentation any time. This segment can
subsequently be entered as statement list. The system reverts to control
system flowchart mode at the beginning of the next segment.

It is also possible to prevent S5 for Windows® from switching into CSF
mode (if CSF is selected in the “Preference” settings). By entering “STL”
at the beginning of a segment the segment will only be displayed in STL.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-17

1.2 Structure of the Application Program

The program in the CPU is divided into the system program (Firmware)
and the application, or user, program.

System programs (Firmware) are all statements and declarations
relating to internal controller functions (e. g. the saving of data in the
event of a power failure, organizational functions for the nesting of
blocks, and so on). The system programs are stored in EPROMSs in the
CPU’s program memory. The user has no access to system programs.

Application programs (User Program) comprise all statements and
declarations for processing the signals affecting the controlled plant
(process). Application programs are divided (structured) into blocks.

The Blocks in an application program are written in the STEP 5
programming language.

The organization blocks are the interface to the system program. A
number of standard function blocks are integrated in the CPU’s system
program (integral special functions).

Blocks
A block is a portion of a program delimited by its function, structure or
purpose. In STEP 5, a distinction is made between blocks containing
statements for signal processing (organization blocks, program blocks,
function blocks and sequence blocks) and blocks containing data (data
blocks).

As arule, a STEP 5 program consists of program sections which are
invoked and processed sequentially. These sections are referred to as
“blocks”. There are several different types of blocks. These block types
are application-dependent,

The program normally begins with organization block OB 1. The other
blocks are then called as subroutines from within this block.

__|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-18 Basic S5 Programming Chapter 1

Organization blocks (OBs)
Organization blocks (OBs) control the application program either by
listing the program blocks to be executed or by their existence as
special functions in the CPU system program.

Organization blocks of the first type control cyclic, interrupt- driven and
time-controlled program execution, restart performance, and responses
in the event of errors and faults. These OBs are invoked in the system
program, and are programmed by the user.

Organization blocks of the second type represent special functions, and
the user may only invoke them.

Program blocks (PBs)
Program blocks (PBs) usually contain the largest part of the user
program, and are programmed in accordance with process-related or
function-related aspects. Program blocks can be entered and
documented in all three methods of representation (CSF, LAD and STL).

Function blocks (FBs, FXs)
Function blocks (FBs, FXs) are used to implement frequently recurring
or very complex functions. The user may make use of preprogrammed
(standard) function blocks, and/or may also program his own FBs in STL
notation.

In addition to the basic operations, additional operations
(“supplementary operations” and “system operations”) may be used in
function blocks.

Function blocks can be assigned parameters, i.e. the function
implemented by a function block can execute with different operands
(block parameters).

Sequence blocks (SBs)
Sequence blocks (SBs) are used to program sequencers. When the
GRAPH 5 software is used, the entire sequencer is programmed in a
single sequence block. If GRAPH 5 is not used, one sequence block
must be written for each sequence step. These blocks are invoked by a
“Sequence control” function block which assumes organization of the
sequencer.

___|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Chapter 1 Basic S5 Programming Page 1-19

Data blocks (DBs, DXs)
Data blocks (DBs, DXs) contain the data for the application program.

The operand area for data (D) is used when the flag area does not offer
sufficient capacity for storing signal states and data.

Generally speaking, the flag area is used primarily for storing binary
signal states and the data area for storing digital values.

Data is organized in data blocks (DBs or DXs); 256 16-bit data words
can be addressed directly in each data block.

The data is located either in user memory, where it must share the
available space with the user program, or in a memory area reserved
exclusively for data blocks (DR RAM).

Before a block can be processed, it must first be invoked, or called.

A call may be either unconditional or be dependent on the result of the
previous logic operation (RLO).

Once the block has been processed and the Block End (BE) statement
encountered, the program is resumed with the statement following the
block call statement, i.e. in the “calling” block.

1.3 Segment

The program in a block is subdivided into segments.

In the graphic programming modes, a segment contains one logic
operation (control system flowchart) or one rung (ladder diagram).

These strict conventions need not be applied to statement lists, in which
a segment may contain as many as 255 16-bit statements (fewer when
two-word statements are used).

It is nonetheless recommended that statement lists also have either a
process-related or logic-related structure, thus enabling each segment
to be documented as a self-contained program section.

Each segment may be preceded by up to a 60-character segment
header and a segment commentary of arbitrary length.

__|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Page 1-20 Basic S5 Programming Chapter 1

1.4 PLC Program Structures

The structure of PLC Programs can be segmented into three groups.

The kind of structure selected to build a PLC Program depends on the
application.

The programming language STEP® 5 and/or S5 for Windows® provides
the tools to build a PLC Program in all three structures.

PLC Program Structures

Linear Partitioned Structured
Task 1
- otor]
OB1 OB1 (.. OB1 [
[Vave]
~~~~~~~~~ |

1.5 Linear Programs

A program designed with a “linear” structure puts the entire program into
one contiguous block of instructions, usually OB1. The program
executes every instruction in sequence. This structure is a model of the
hard-wired relay ladder logic that PLC systems initially emulated.

The linear program has a simple, straightforward structure.
Only one logic block (typically OB1) contains all of the instructions for
the program.

Since all of the instructions reside within one block, this method of
programming is best suited for projects that have one person writing the
program. Since there is only one program file, software management
functions (like archival of the program files) are simplified.

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-21

1.6  Partitioned Program

A partitioned program is divided into blocks, with each block containing
the logic for a given set of devices or tasks. The instructions residing in
an organization block (OB1) determines the execution of the partitioned
blocks of the control program. For example, a partitioned program might
contain the following elements:

¢ Functions for controlling each section of the equipment

e Functions for controlling each mode of operation for the
equipment

¢ Functions for controlling the operator interfaces
¢ Functions for handling diagnostic logic

In the partitioned program, there is still no interchange of data or
reusable code, however, each functional area is broken up into different
blocks. This allows you to have several people programming at the
same time without the conflict of editing the same file. The program that
resides in OB1 contains all the instructions required to call the different
blocks.

This design philosophy differs from a structured approach in that each
block is completely self-contained: it gathers and manipulates its own
data and processes its instructions in sequence. Unlike the structured
program, the blocks of a partitioned program do not pass or receive
parameters.

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-22 Basic S5 Programming Chapter 1

1.7  Structured programs

A “structured” program contains user-defined blocks of instructions with
parameters, similar to user-defined instructions. In creating a program
for a process or a machine, portions of the control logic are often
repeated for common equipment or logic functions. Instead of repeating
these instructions and then substituting a different addresses for specific
equipment, you can write the instructions into a block and then have the
program pass parameters (such as the specific address of the
equipment and operational data) to the block. The following list shows
examples of the use of generic (reusable) blocks in a program:

A block that contains the logic common to all of the AC motors in a
conveyor system.

A block that contains the logic common to all of the solenoids in an
assembly machine.

A block that contains the logic common to all of the operator station
interfaces, in a canning line.

A block that contains the logic common to all of the drives in a paper
machine.

The structured program identifies the types of functions required by the
process and attempts to provide a generic solution that can be used for
several tasks.

For example, the pumps for both Ingredients A; & B; and the motor for
the Agitator can be controlled by the same function block. By changing
the parameters that are passed to the FB called “Motor” the program
uses one block to control three different devices.

A structured program requires that you manage the data being stored
and used by the program.

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-23

Example:

The Function (PLC Block)"Motor" in the illustration below contains the
logical connection (S5-Code) of “Inputs” (Ix.x) and Outputs (Qx.x), which
must be considered when switching on the different motors (e.g. mode
of operation, temperature etc.).

Structured Program

FB 2

OB 1

Motor 1

FB 2

Motor 2

FB 2
Motor 3

AL

The PLC Block calling the Block "Motor, supplies the information in
order to switch on and control a specific Motor.

The programming language STEP® 5 offers different types of PLC
Blocks to divide a PLC Program.

The instructions to define a logical problem are located in a PLC Block.
Therefore a PLC Block can also be called “Sub-Routine”.

The Organization Block OBL1 is used to supervise all the single PLC
Blocks. The Organization Block OBL1 is called by the operating system in
a cyclic matter.

From the Organization Block OB1 the program branches out to all the
other PLC Blocks (Sub-Routine) holding the actual control program.

It becomes thereby between Program Blocks (PB) and functional
modules (FB) differentiated.

User programs for extensive tasks of automation are developed with
partitioned and structured program sections.

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-24 Basic S5 Programming Chapter 1

1.8 Example of a program structure

In the following example the absolute branching to a PLC Block
(JU) is used not only in the Organization Block OB1, but also in the
Program Block PB2 and the Function Block FB3.

With the instruction "JU PB2" within the Organization Block OB1 the
program branches out to the Program Block PB2. The instruction "JU
FB3" within the Program Block PB2 causes a further branching to the
Function Block FB3, in order to branch out from there with the
instruction "JU PB4" to the Program Block PB4.

Now the returns can take place. The arrows indicate that with “Block
End” of the Program Block PB4 the program returns to the Function
Block FB3. The “Block End” from the Function Block FB3 initiates a
return to the Program Block PB2, and from there the program returns to
the Organization Block OB1, initiated by “Block End”.

PLC Program Nesting

(BE)
Block 5 (PB5)

}

Block End
Block End (BE) B8

Y

OB 1 Block 1 (PB1)
Call Block 1 (JU PB1) < l Block 3 (FB3) Block 4 (PB4)
Block End
(BE) /
Call Block 2 (JU PB2) Call Block 4
\ Block 2 (PB2) UPBA4) l
Call Block5 (JU PBS) Call Block 3 l
FB )
UFBS3) \ Block End
l '(BE)
Block End
Block End (BE)

In a PLC Program "branching out" is called "nesting depth”. The nesting
depth states, how many PLC Blocks are called from OB1 in horizontal
direction.

The maximum nesting depth allowed depends on the CPU type. If
nesting goes beyond 32 levels, the PLC goes into the "STOP" mode

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-25

1.9 Cyclic Program Processing

In the following illustration, cyclic program processing is schematically
represented. In the example a program is executed.

Cyclic PLC Program Execution

— Cycle Beginn

The Status of the Inputs is
Process Image ____—transfered into Process Image

Input Table (PII) Input Table (PII)
A\V4
1* Instruction
\/
2 Instruction
\/
3“ Instruction
N/
4" Instruction
\Z
1 PLC User Program
i | execution
| i
| |
|
| i
| |
¥ |
Last Instruction
A\V4 ¥
AV The Status of the Process Image
Process Image ____—Output Table (PIQ) is transfered into
Output Table (PIQ) the Output Modules

— Cycle End

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-26 Basic S5 Programming Chapter 1

The Cyclic PLC Program Execution
The operating system starts the cycle time monitoring.

The data of the inputs of the Input modules (Peripheral Input Memory)
are mapped into the Process Image Input Table. The Process Image
Input Table is a storage area in the main memory (RAM) of the CPU.

The execution of the PLC user program is started. One instruction after
another as written in the user PLC program is executed.

If all PLC Instructions are processed (Block End of OB1), the Process
Image Output Table holds the results of the logical connections. The
data of the Process Image Output Table are mapped to the “Peripheral
Output Memory” and is now available at the outputs of the Output
Modules.

The cyclic PLC Program execution described above shows some
fundamental weaknesses in the function of a PLC.

The status of the inputs (actuators etc.) is read at the beginning of a
cycle. Changes in status during the remaining cycle time are normally
not recognized by the system.

The outputs are only updated after the complete PLC Program has been
executed.

To overcome these restrictions, additional functions are available to
bypass the cyclic program execution.

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-27

1.10 CPU Start-up

With the change of the mode selector from "STOP" (ST) to "RUN" (RN)
the CPU executes the "RESTART" mode automatically and switches
from "STOP" to "RUN".

RESTART OB’s
Manual cold restart: OB21 is processed

Automatic cold restart: OB22 is processed (mode selector at “RN”)

Restart Characteristics
Everything that takes place between
e a STOP RUN transition (manual cold restart) or

e a POWER UP RUN transition (automatic cold restart after power
up)

is referred to as restart characteristics.

Two phases can be distinguished during restart:
e The cold restart routine (PLC cannot be directly influenced)
e The actual RESTART (PLC characteristics can be controlled in
RESTART OBs (OB21 and OB22)).
Cold Restart Routine
The following applies while the CPU runs the cold restart routine:

e The status of the error LEDs remains unchanged during manual
cold restart.

e The error LEDs light up momentarily during automatic cold restart
after power up

e Outputs display signal "0" if all output modules are disabled
e Allinputs and outputs in the process I/O image display signal "0"
e Scan time monitoring is inactive.

During the cold restart routine, the processor configures the 1/0 modules
and stores this information.

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-28

Basic S5 Programming Chapter 1

Restart Characteristics and Cyclic Operation

The following figures give an overview of the restart characteristics of
the CPUs and of cyclic operation. They also show how the restart
characteristics depend on the state of the backup battery and they
indicate the conditions for changing the operating mode.

CPU Restart Characteristics

Mode selector STOP RUN
PG command RUN

Power Restoration
(If the PLC was in RUN at POWER OFF)

\ 4 Y
Process I/0 image (PIl and PIQ) is deleted ; Process I/0 image (PIl and PIQ) is deleted ;
Non-retentive timers, counters and flags are Non-retentive timers, counters and flags are
@) deleted; deleted;
=) Digital outputs are overwritten with "0"; Digital outputs are overwritten with "0";
o Configuration of 1/0O modules is Cold restart routine is delayed (delay
ﬁ determined and stored; time in SD 126);
5“ Memory submodule is tested: Configuration of 1/O modules is
p Address list for the control programis determined and stored,;
o constructed; Memory submodule is tested:
=1 DB1is interpreted . Address list for the control program is
CSD' constructed;
DB1is interpreted .
In addition, the battery, memory submodule and status
before POWER OFF are evaluated.
y A y
T Processing of OB21 Processing of OB22
m
4 | t
>
Py}
— Outputs enable
y y
| Process Image Input (PlII) read in |
- y
C Processing of OB1
Z
\ 4
Process Image Output (PIQ) output

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training

TTlI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-29

1.11 Cyclic Program Processing

In the following illustration, cyclic program processing is schematically
represented. In the example a program is executed, which consists of
the PLC Blocks OB1, PB1 and PB2.

Cyclic PLC Program Execution

Start Cycle Time Monitoring

l

A\ 4

>| Operating System >

Inputs

The Status of the Inputs
are transfered into the

Lo : W2 Lo “Process Image

Input Table (PIl)”

Llelefelel~]-]e

=
A
B/ =
A=

Timer
Counter
z, E:
2 N
3 J
‘1P @SS
Tt AN T2
r;\J U L\\{} 1 Y \
The Status of the
// N “Process Image
/ Output Table (PIQ)” Outputs o] »
are transfered to the Outputs > BE
BE
BE
WV ]

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-30 Basic S5 Programming Chapter 1

The Cyclic PLC Program Execution
The operating system starts the cycle time monitoring.

The data of the inputs of the Input modules (Peripheral Input Memory)
are mapped into the Process Image Input Table (PIl). The Process
Image Input Table is a storage area in the main memory (RAM) of the
CPU.

The execution of the PLC user program is started. From OB1 the
program execution branches out to PB1. The logic functions from PB1
are executed. Initiated by “Block End” from PB1 the program returns to
the Organization Block OB1.

If all PLC Blocks are processed (Block End of OB1), the Process Image
Output Table (PIQ) holds the results of the logical connections. The data
of the Process Image Output Table (PIQ) are mapped to the “Peripheral
Output Memory” and is now available at the outputs of the Output
Modules.

The operating system tests the cycle time monitoring and restarts the
execution.

If the preset watchdog is timed out, the CPU is switched into the stop
condition and the cyclic PLC Program execution is terminated.

The cyclic PLC Program execution described above shows some
fundamental weaknesses in the function of a PLC.

The status of the inputs (actuators etc.) is read at the beginning of a
cycle. Changes in status during the remaining cycle time are normally
not recognized by the system.

The outputs are only updated after the complete PLC Program has been
executed.

To overcome these restrictions, additional functions are available to
bypass the cyclic program execution.

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-31

1.12 Organization Blocks for Interrupt-Driven Program
Execution

The events that lead to an OB being called are known as interrupts. Not
all S5CPUs have the complete range of organization blocks.

Non-Cyclic Program Execution
With STEP 5, selected parts of the user program that do not need to be
executed cyclically can be executed when the situation deems it
necessary. The user program can be divided up into "subroutines” and
distributed in different organization blocks. If the user program should
react to an important signal that seldom occurs (for example a limit
switch indicates that the slide is at the end), the section of program to be
executed when this signal is present can be written in an OB that is not
executed cyclically.

Apart from cyclic program execution, STEP 5 provides the following
types of program execution:

e Time-driven program execution

e Hardware interrupt-driven program execution (from Inputs)
e Diagnostic interrupt-driven program execution

e Multi-computing interrupt-driven program execution

e Error handling

By providing interrupt OBs, the S5 CPUs allow the following:

e Program sections can be executed at certain times or intervals
(time-driven).

e The User PLC Program can react to external signals from the
process.

The cyclic user program does not need to query whether or not interrupt
events have occurred. If an interrupt does occur, the operating system
makes sure that the user program in the interrupt OB is executed, so
that there is a programmed reaction to the interrupt by the PLC.

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-32 Basic S5 Programming Chapter 1

Cyclic Interrupt Organization Blocks (OB10 to OB18)
The S5 CPU's have integrated “Cyclic Interrupt OBs”. These OBs can
be called in a certain time pattern by the operating system, completely
independent from the cyclic program (OB1)

The internal CPU clock calls for the interrupted OB to interrupt the cyclic
program sequence.

After processing the OB the program returns to its cyclic execution.

| Current Cycle Next Cycle | Next Cycle
I
| T | T |
C1 Cc2
I- L -Jlr-l
|
| I |
| 0813 | |
I | I
I | I
| I |
Updates Process Updates Process |Updates Process Updates Process | Updates Process
Image Input OB1 ! !OBI Image Cutput Image Input OB1 Image Cutput Image Input OB1
Table Table Table Table Table
Note:
The cycle time of a program (OB1) can be substantially changed by
processing “Interrupt OBs”.
This difference in execution time, per OB1 cycle, can cause problems.

Overview of the Cyclic Interrupt OBs default settings

(not all CPUs have all Cyclic Interrupt OBs)

Organization | Time Pattern Organization | Time Pattern
Block Block
OB 10 10 ms OB 15 500 ms
OB 11 20 ms OB 16 1ls
OB 12 50 ms OB 17 2s
OB 13 100 ms OB 18 5s
OB 14 200 ms

___________________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 1 Basic S5 Programming Page 1-33

Interrupt Driven Program Scanning
The S5 CPUs provide interrupt OBs that react to signals from the input
modules.

Interrupts are triggered when a signal module, with system interrupt
capability passes on a received process signal to the CPU.

System interrupts (IR-A, IR-B, IR-C, IR-D) can only be executed when
the corresponding organization block exists in the CPU program. If this
is not the case, an error handling is executed (OB70 to OB87 / OB121 to
0OB122)).

If the system interrupt OBs are deselected in the parameter assignment,
these cannot be started. The CPU recognizes a programming error and
changes to STOP mode.

Overview of the System Interrupt OBs default settings
(not all CPUs have all Hardware Interrupt OBSs)

Organization Block Parameter
OB 2 System Interrupt A
OB 3 System Interrupt B
OB 4 System Interrupt C
OB 5 System Interrupt D

Error Handling Organization Blocks
The following table shows the types of errors that can occur, divided in
to the categories of the error OBs.

Error Type

OBs for handling programming errors and PLC faults
OB19 | When a block is called which has not been loaded

0OB23 | CPU Redundancy Error (only in H CPUs, e.g., failure of a CPU)

OB24 | Timeout during update of the process image and the inter-
processor communication flags

0oB27 Substitution error

OB32 | Transfer error

OB34 | Battery failure

______________________________________________________________________________________________________________________________|]
TTlI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 1-34 Basic S5 Programming Chapter 1

Error Type

OBs for handling system errors

0OB26 Scan time exceeded

OB33 | Collision of two timed interrupts
OB35 | I/O error

OBs which offer operating functions

OB31 | Scan time triggering

OB160 | Programmable time loop

OB250 | Operating system services

OB254 | Read in process I/O image

OB255 | Output process I/O image

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-1

2 Statement List Instructions Structure

A large number of STEP® 5 instructions can only be displayed in the
“Statement List” (STL) presentation.

An instruction statement is the smallest executable part of a PLC
program and is made up of individual components. The statement is
interpreted, according to its structure, and is executed by the CPU.
Depending on the type of statements, the structure may vary.

Basically there are two types of statements. One is a statement made
up of an instruction alone (e.g. NOP, NOT, etc.) and the other is a
statement made up of an instruction and an address / parameter field
(e.g. L +12, L -Stop, etc.).

S5 STL Statement

Jump Label Operation Code Operand Section Comment
(Destination) (Instruction) (Address)
Identifier Parameter / Address
MO0O03: L | QB | 47 | ; Output Byte 47

Symbolic Address

TEST: L | -MOTOR_Control_3 | ; Output Byte 47

Note:

With the “Format” (key F9) command all “Key Words/Characters” entered
in the “Instruction and Address Field” that are lower case characters are
converted into upper case characters. In addition the “Format” command
puts every field in its predefined column.

Jump Labels, Symbolic Addresses and Comments are not changed with
the “Format” command.

S5 for Windows® supports all instructions used with the programming
language STEP®S5.

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-2 Statement List Instructions Structure Chapter 2

Jump Label

The destination of a jump instruction is indicated with a label. The label
may have up to four (4) characters. The first character must be an alpha
character. The destination label itself is terminated with a colon (:) (e.g.
TEST:).

Instruction (Operation Code)

In the instruction field of a statement, the task that the CPU should
execute is defined (e.g. A for AND, O for OR, T for a transfer, etc.).

The S5 for Windows® Format (F9) command converts all typed
characters into capital letters and puts them into the instruction field
column.

S5 for Windows® supports all the instructions available in the Siemens®
S5 PLC series. A list of the instructions that your particular CPU can
support will be found in the instruction list manual for that CPU.

Address (Operand Section)

In the address field of a statement, who should participate is defined,
when the instruction is executed by the CPU. This could be an absolute
addressed variable (e.g. QB47), a defined symbolic variable (e.g.
Limit_Switch), or a constant (e.g. KT 500.1), etc. Some instructions do
not require an operand.

Absolute Address
Identifier:

S5 for Windows® supports all “Identifiers” used with absolute addresses
for the instructions available in the Siemens® S5 PLC series.

The S5 for Windows® command Format (F9) converts all identifier
characters into capital letters and puts inserts them into the appropriate
column.

Parameters:

A parameter is an address made up of numbers. The S5 for Windows®
Format (F9) command does not change the address but inserts it into
the appropriate column.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-3

Symbolic Addresses

The S5 programming syntax requires that the Symbolic Addresses must
be typed in the statement in the same form as they are declared, with
regard to lower and upper case letters. The S5 for Windows® Format
(F9) command does not change the variable but inserts them into the
appropriate column.

Symbolic Addresses are defined in the symbolic table. A symbolic
variable is assigned to an absolute variable. This declaration must be
done in the STL editor prior to using the symbolic variable. A Symbolic
Address must be clearly defined for all blocks and may be used
throughout the entire PLC program.

Comments

Each statement line may have a comment assigned to it. The optional
comment starts with the semicolon character (;) and is valid up to the
end of the line. The comment may have up to 60 printable characters.

A comment may also be entered into a separate line. This line must
starts with the semicolon character (;).

The S5 for Windows® Format (F9) command does not change the
comment but inserts it into the appropriate column.

L FY¥ 106 ; Thiz iz a STL Line comment
; Thiz comment i=s entered in a =separate line

STL Instruction

ML: A Q12
\

— — —
L Bit Address
Byte Address
— Address ldentifier

‘—» Operand Section

> Instruction
» Jump Label

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-4 Statement List Instructions Structure Chapter 2

2.1 STEP 5 Operands

The programmable controller processes the signal states of sensors
made available via "inputs". The results of the logic operations are
forwarded to the actuators via "outputs"”.

These variables (inputs and outputs) are referred to as operands, and
are processed using functions or operations. The STEP 5 programming
languages recognizes several different types of operands, the most
important of which are inputs (1), outputs (Q), I/0s (P), flags (F), timers
(T), counters (C) and data (D). The letters in parentheses are the
abbreviations used for the various operand types in STEP 5.

The majority of operands can be processed bit by bit. A group of eight
contiguous bits combined to form a single unit is referred to as a byte. A
word consists of 16 bits, a double word of 32 bits.

Inputs, Outputs, I/Os

The I/O area (P — Peripherals) is used for direct addressing of the 1/0
modules in the user program. This area enables addressing of 256
bytes on input modules and 256 bytes on output modules.

As a rule, the operand areas for inputs (1) and outputs (Q), rather than
the P (Input / Output modules) area, are used in the program to address
the 1/0 modules (which cannot be referenced by bit).

These operand areas are located on the CPU in an area of memory
referred to as the "process image".

The central processor's system program loads the signal states of the
input modules into the process input image at the start of the program
scan. The signal states of this operand area are then interrogated and
logically gated as per the operations and functions written in the user
program, and the appropriate bits subsequently set in the process
output image. At the end of the program scan, the system program
automatically transfers the signal states of the process image to the
output modules.

Should the 256-byte I/O area prove insufficient, expansion units can be
interfaced to enable use of the extended I/O area (called the O area) or
to provide an extended addressing capacity.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-5

Flags, Timers, Counters

The flags (F) are the controller's "contactor relays"”, so to speak, and are
used primarily for storing binary signal states. The operand area for
flags is a special memory area on the CPU.

There are 256 flag bytes (the equivalent of 2048 flag bits).

Some CPU’s have an extended flag area (S) with 1024 additional flag
bytes (equivalent to 8192 flag bits). These "S flags" are handled in the
same way as the "F flags".

The operand area for timers (T) corresponds to the timing relays in a
contactor control system. The timers are located in a special operand
area on the CPU. Up to 256 timers are possible (depending on the
CPU).

Five different kinds of timers can be implemented; these can be
programmed for times in the range from 10ms to 9990s (2h 46min 30s).

The counters (C) function as hardware counters, but are located in a
special memory area on the CPU. Up to 256 counters are possible
(depending on the CPU).

All of these counters can be used as up or down counters, and all have
a counting range of from 0 to 999.

Counts in the negative range are not possible. The count is made
available in binary or BCD.

Because these counters are software counters, their operating
frequency depends on the program scan time.

Data

The operand area for data (D) is used when the flag area does not offer
sufficient capacity for storing signal states and data.

Generally speaking, the flag area is used primarily for storing binary
signal states and the data area for storing digital values.

Data is organized in data blocks (DBs or DXs); 256 16-bit data words
can be addressed directly in each data block. The data is located either
in user memory, where it must share the available space with the user
program, or in a memory area reserved exclusively for data blocks (DB
RAM).

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-6 Statement List Instructions Structure Chapter 2

2.2  Operands, Addressing Overview

In the following chapter the most common S5 Operands are listed.

Operands Addressing

An Operand is built up from an “Address Identifier” (Name) and an
“‘Address”.

M 12.6

‘ L Address

Depending on the number of bits addressed the Operand (Variable) has
different “Address Identifiers”.

STEP®5 uses the following number of bits with Variables:

Data .
Width Description Example
1 Bit Bit Variable (1 Bit) 12.3; Q45.6; M34.3; DBX43.1,
DIX14.6
8 Bit Byte Variable (8 Bit) IB12; QB45; MB23; DBB12; DIB14
16 Bit | Word Variable (16 Bit) IW38; QW32; MW66; DBW3; DIW16
32 Bit | Double Word Variable (32 Bit) | ID55; QD43; MD62; DBD23; DID33

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-7

Bit Variables (Bit Operands)

Bit variables have an address identifier, a byte number, and — separated
by a period — a bit number (Binary Address).

Addressing of an Output Variable

Q126

—
‘ L Bit Address (0...7)

Byte Address
Address Identifier

\ J

Y

\4

Bit Variable

e The numbering of Bit Variables start with the byte number at zero
for each address area. The upper limit is CPU specific.

e Bits (fromthe I, O, F, or S area) are numbered from O to 7.

e Bits (from Data Blocks, D / DX) are numbered from O to 15.

Variable Description Example
I A single Bit Input from the Process 1 63.1
Image Input Area (PII)
Q A single Bit Input from the Process Q451
Image Output Area (PIQ)
F A single Bit Input from the Flag F 88.4
Memory Area
S A single Bit Input from the Extended | S 12.7
Flag Memory Area
D A single Bit from a Data Block or D 74.15

Extended Data Block. Before the
operand area for data can be used,
the data block (DB or DX) containing
the relevant operand must be
selected in the program

T A Bit Information from / to a Timer T12
C A Bit Information from / to a Counter | C 15

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-8 Statement List Instructions Structure Chapter 2

Byte Variable (Byte Operands)

The absolute address of a Byte Variable consists of the address
identifier and the number of the byte containing the variable.

The address identifier is supplemented with a “B” (not for Bytes from
Data Blocks).

Addressing a Memory Byte

MB 12

I Byte Number (0to ....)

e The numbering of Byte Variables start at zero for each address
area. The upper limit is CPU specific.

Variable Description Example

B Input Byte from the Process Image Input Area IB 63
(PIN

QB Output Byte from the Process Image Output QB 45
Area (PIQ)

FY A Byte from the Flag Memory Area FY 88

SY A Byte from the Extended Flag Memory Area SY 12

DL A Low Byte (right Byte from a Data Word) from | DL 74

a Data Block or Extended Data Block.

Before the operand area for data can be used,
the data block (DB or DX) containing the
relevant operand must be selected in the
program

DH A High Byte (left Byte from a Data Word) froma | DH 74
Data Block or Extended Data Block.

Before the operand area for data can be used,
the data block (DB or DX) containing the
relevant operand must be selected in the

program
PY Peripheral Byte (direct I/O access) PY 123
OB Extended Peripheral Byte(direct I/O access) OB 234

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-9

Word Variable (Word Operands)

A “Word Variable” consists of two (2) bytes, the “Low Byte” and the
“High Byte”.

The absolute address of a Word Variable consists of the address
identifier and the number of the byte addressing (high order byte) the
word variable.

The address identifier is supplemented with a “W”.

Addressing a Memory Word

MW 32

L— Byte Number (0to ....)

e The numbering of Word Variables start at zero for each address
area. The upper limit is CPU specific.

e Data from Data Blocks are addressed with word numbers.

Variable Description Example

W Input Word from the Process Image Input | IW 63
Area (PII)

QW Output Word from the Process Image QW 45
Output Area (PIQ)

FW A Word from the Flag Memory Area FwW 88

SW A Word from the Extended Flag Memory | SW 12
Area

DW A Data Word from a Data Block or DW 74

Extended Data Block.

Before the operand area for data can be
used, the data block (DB or DX)
containing the relevant operand must be
selected in the program

PW Peripheral Word (direct 1/0 access) PW 123
ow Extended Peripheral Word (direct 1/0 Oow 234
access)

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-10 Statement List Instructions Structure Chapter 2

High Byte and Low Byte in a Word

Because of the “Byte Addressing” the orientation of digits within a Word
IS very important.

A word is divided into a High Byte and a Low Byte.

215 214 213 212 211 210 29 28'27 26 25 24 23 22 21 20

The example in the picture shows that value of 18,335 is stored in the
Memory Word MW30 (hex 479F).

Note:

The “High Byte” specifies the Word Variable Address. It contains the
high order digits of the Word.

The “Low Byte” is the Word Variable Address +1. It contains the low
order digits of the Word.

Note:

In Data Blocks the data is organized with Word Numbers. A Data Word is
made up by the “High Byte” and the “Low Byte”.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-11

Double Word Variable

A “Double Word Variable” consists of four (4) bytes, the “Low, Low Byte
the “Low Byte”, the “High Byte” and the “High, High Byte”.

”

The absolute address of a Double Word Variable consists of the
address identifier and the number of the byte addressing (highest byte)
the double word variable.

The address identifier is supplemented with a “D”.

Addressing a Memory Double Word

MD 64

L— Byte Number (0to ....)

e The numbering of Double Word Variables start at zero for each
address area. The upper limit is CPU specific.

Variable Description Example

ID Input Double Word from the Process ID 63
Image Input Area (PII)

QD Output Double Word from the Process QD 45
Image Output Area (PIQ)

FD A Double Word Input from the Flag FD 88
Memory Area

SD A Double Word from the Extended Flag SD 12
Memory Area

DD A Double Data Word from a Data Block or | DD 74
Extended Data Block.

Before the operand area for data can be
used, the data block (DB or DX)
containing the relevant operand must be
selected in the program

Note:

Direct I/O access (Peripheral Data) cannot be accessed using Double
Words.

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-12 Statement List Instructions Structure Chapter 2

Byte Order in a Double Word Variable

Because of the “Byte Addressing” the orientation of digits within a
Double Word is very important.

A double word is divided into a High High Byte, High Byte, a Low Byte,
and a Low Low Byte.

2R R R R R R 2 R 2R R R R R R R R R R 2 2 2 2 [ 2 [ 2 2’ 2’ 2 2]
U JL JL J L

J

High High Byte | High Low Byte Low High Byte | Low Low Byte
MB 30 MB 31 MB 32 MB 33

ojlojof1fafafafaf1fofof1[a[2]rJoff1fof1f1[of2[2]2Jof1]O]J1]1[1]O]1
1 F 9 E B 7 5 D

The example in the picture shows that value of 530.495.323 (decimal) is
stored in the Memory Double Word MD30 (hex 1F9E B75D).

In a Double Word Variable Floating Point values (Real) are also stored.
The bit, in a Floating Point presentation, has other values

Note:

Data Blocks are organized with Words.

A Data Double Word is made up from two (2) Words.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-13

S5 Variables (Operands)
Variables Description I\i‘l‘%x(;?;l;rsn Example
Qn.n Single Output Bit 0.0to 127.7 |QO.1
QBn Output Byte 0to 127 QB12
QWn Output Word 0 tol26 QW23
QDn Output Double Word Oto 124 QD45
In.n Single Input Bit 0.0to 127.7 |l10.1
IBn Input Byte 0to 127 IB12
IWn Input Word 0 tol26 IW23
IDn Input Double Word Oto 124 ID45
Mn.n Single Flag Bit 0 to 255.7 MO.1
MBn Flag Byte 0 to 255 MB12
MWn Flag Word 0to 254 MW23
MDn Flag Double Word 0 to 252 MD45
Sn.n Single Extended Flag Bit 0to01023.7 |LO.1
SYn Extended Flag Byte 0to 1023 LB12
SWn Extended Flag Word 0to 1022 LW23
SDn Extended Flag Double Word 0 to 1020 LD45
PYn Peripheral Byte 0 to 255 PQB14
PWn Peripheral Word 0to 254 PQWS55
OBn Extended Peripheral Byte 0 to 255 PIB12
OWn Extended Peripheral Word 0 to 254 PIW45
Dn.n Single Bit in Data Block (DBn / DXn) 0.0t0 255.15|D 1.0
DLn Left Data Byte in a Data Block (DBn / DXn) 0to 255 DL 12
DRn Right Data Byte in a Data Block (DBn / DXn) 0 to 255 DR 12
DWn Data Word in al Data Block (DBn / DXn) 0 to 255 DW 6
DDn Data Double Word in a Data Block (DBn / DXn) |0 to 254 DD 5
Tn Timer 0 to 255 T12
Cn Counter 0 to 255 Cil4
OBn Organization Block 1to 122 OB 1
PBn Program Block 0 to 255 PB 23
FBn Function Block 0 to 255 FB 12
DBn Data Block 0 to 255 DB 17
DXn Extended Data Block 0 to 255 DX 27
BBn Picture Blocks 0 to 255 BB 15

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training




Page 2-14 Statement List Instructions Structure Chapter 2

Overlapping of Variables

Addressing Word Variables, Double Word Variables, and Byte Variables
is done in the same way. The addressing for all three types of variables
is done using a byte number. Such an addressing scenario of Word
Variables and Double Word Variables allows for the overlapping of data.

The Flag Word FW10 consists of the Flag Bytes FY10 and FY11.
The Flag Word FW11 consists of the Flag Bytes FY11 and FY12. Both
Flag Words overlap each other with the Flag Byte FY11.

For the same reason an overlap with Double Word Variables is also
possible.

The Flag Double Word FD30 consists of the Flag Bytes FY30, FYB31,
FY32, and FY33.

The Flag Double Word FD31 consists of the Flag Bytes FYB31, FY32,
FY33, and FY34. Both Flag Double Words overlap each other with the
Flag Bytes FY30, FYB31, FY32, and FY33.

Variable Data Overlapping

FY30 FY31 FY32 FY33 FY34 FY35 FY36
. J
FW30 FW32 FW34
(& v A v A v J
FW31 FW33 FW35
& J
FD30
(& v J
FD31
(- v J
FD32
U v J
FD33
Note:
To avoid data overlaps when working with Word Variables it is a good idea
to use even byte address numbers only.
To avoid data overlaps when working with Double Word Variables it is a
good idea to use only byte address numbers that can be divided by four
(4).

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-15

2.3  Symbolic Programming

In Step® 5, symbolic programming is a very common way to address
operands (variables).

Symbolic operands (such as —Test_01) may be used in place of
operator identifiers and parameters (e.g. | 4.0). An assignment list must
be generated, however, before symbolic operands can be used in the
program.

Note:

In the “Symbolic Table” the user assigns a “Symbol” to an absolute
operand (Variable). These “Symbols” can be used within the entire PLC
program. The symbolic name assigned to an operand (Variable) must be
unique within the whole PLC program.

® Symbolic names can be used instead of absolute addressing.
® Symbolic names must be assigned prior using them in the PLC
program.
Symbolic Table Format

The maximum column width is set as follows:

Variable (Operand) Symbol Comment
The number of characters is | maximum 24 alpha maximum 40 alpha
given by the absolute numerical characters numerical characters
address.

(maximum 10 characters)

Temperatue_Comp_2 |Motor temperature of
PW 22 Compressor 2

The assigned symbol may be up to 24 characters (alpha and numeric
characters). The actual number of characters displayed on the screen in the
LAD and CSF presentation is dependent upon the selection from the
preferences dialog box.

With S5 for Windows® up to 24 characters can be displayed. In STL and
Block-STL (source text) presentation the symbolic address is always
displayed with up to 24 characters,

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-16 Statement List Instructions Structure Chapter 2

Note:

In LAD, CSF STL and Block-STL presentation a symbolic operand
(variable) must be entered with a minus sign in front (-Symbol).

® Symbolic Operands (Variables) (-Symbols) are not modified with
the format command (key F9).

Symbolic Table (Global Variables)

(3 [ W
55 1 57 for Windows® - csf_lad stl presentation symbals - [Symbolic Table Editor] E]|E|rz|
I]H Symbolic Table Modify  Search  Window  Help g X

2|5 ) e =
=

Operand | Symbol | Comment

I 0.0 Automatic Operating Mode AUTOMATIC

I0.1 Limit Switch Elide End Limit

I 0.3 Test Operating Mode TEST

PY 22 Analoyg Output Motor Commanded Speed

DE 10 Motor Data Data Block Motor Control (DE 10)

£

W Basic Traning USNExamples Exvarc=aCSF_LAD STL Pressntafion Symbals =5p PSH, TTH

Absolute / Symbolic Operands (Variables)

=

55 I 57 for Windows® - csf_lad_stl presentation symbols - [S5 Editor : FB 10] Ead
fiiii Block Modify Search Insert Presentation Window Help -8 X

2 |15 5| 27| 20 21 22 | 50 ] Vo )| M =] 5=
ﬂ Segment1 /1 ﬂﬂ ﬂ
Tag | Instruction | Operand | Comment

;S5ymbolic Operands {Variables)
HAME : HOTOR

a
|
=
g
-
Q
"
o
-]
-1
=]

-
=2
E]
'

T —Analog Oufpm

A -Automatic ol

L -Limit Switc TTide End Limit

1] -Tes Operating Mode TEST Absolute Operands

= Q0

L DW 10

T oW 123

BE
<l 3|
WS uungEmanual =SS Basic Traning USA\Examples Exerc=etlSF LAD STL Presentation Symbxls =5 PEH, TTH Mexifed

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-17

Symbolic Operands (Variables)

r —_— .-‘
55 /57 for Windows® - csf_lad_stl presentation symbols - [S5 Editor ; PB 10] H=1E3
W Block Modify Search Insert Presentation  Window Help - X

=i 220 BB 5 O | A =
B | 5| T | 20 e (12| B i Vo | 7] R
e Segment1/1 B2 o] ] 3|silre] X|2 b of 2] S| D] e
Symholic Operants; Segment comment disply: Symbolic Tabhle o
Auto =
on DEf
{ I} s
1
1 I
Left Step3 Delay Right Step2 HMotor
{ I} R 0 { I} L%
Manual
1l
1 I
Count
L)
STOP Stepl
{ I}

b
£ L] >
Operand Symbol Comment
I 5.3 Right This switch is used for right movements »
I 5.4 Left This switch is used for left movements
i This switch stops the Machine =
Q5.0 Motor This is the output to control the motor
F 33.4 Manual Manual mode flag
F 33.5 Stepl Step 1 of =equence 6
F 33.6 Step?2 Step 2?2 of seguence b6 .
] 3
WS genarna= SaW B Traring USMEGres ErscssiCar LAD_STL Fresettion Symbd==sn  [PSA, TT1]

Beneath the actual logic a part of the symbolic table can be displayed.

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-18 Statement List Instructions Structure Chapter 2

2.4 Block Calls

Before the blocks in a user program can be processed, they must be
called. These calls are special STEP 5 instructions known as “Block
Calls”. Block calls can only be programmed within logic blocks (OBs,
PBs, and FBs). They can be compared with jumps to a subroutine. Each
jump means that the execution is branched to a different block.

The return address in the calling block is temporarily saved by the
system.

The base of all “Block Calls” is OB1. Due to the complexity of the Block
Call instruction, the Block to be “called” should be programmed prior
inserting the call instruction into a Block.

Program Blocks (PB), Function Blocks (FB), or Organization Blocks
(OB) may be called.

STEP® 5 knows two (2) instructions JC, JU), to call a Program Block
(PB), Function Block (FB), or Organization Blocks (OB).

Unconditional Call

JU PBn = Unconditional Call JU PB12
JU FBn = Unconditional Call JU FB20
JU OBn = Unconditional Call JU OB13

The Instruction JU <logic block identifier> (unconditional block call) calls
a logic block of the PB, FB or OB type.

The call is executed as soon as the CPU recognizes the instruction and
the program execution branches to the first instruction in the called
Block.

Unconditional means the instruction is executed regardless the status of
the RLO bit in the Status Word.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-19

Unconditional call JU PB1
OB 1 PB 1
%L' First Instruction
JU PB1—

next Instruction\

/

End of OB 1 Y
N\End of PB 1
Unconditional call JU FB1
OB 1 FB 1
%L' First Instruction
JU FB1-—

next Instruction\

/

End of OB 1 Y
N\End of FB 1
Unconditional call JU OB13
OB 1 OB 13

First Instruction

\

TNy
next Instr on
€ structio \

/

Y
N\ End of OB 13

End of OB 1

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-20 Statement List Instructions Structure Chapter 2

Note:

With STEP® 5 the end of a Block is not indicated by an instruction in CSF,
or LAD presentation.

In the presentation STL (Statement List) the end of a Block is indicated
with the “BE”.

Practice Exercise 2-1; Unconditional Call (JU)
1. Create a “New Project” (Exercise 2—1; Unconditional Call).

2. Create the Program Block PB1 (STL presentation) with the
following logical instructions:

10.0 ; Transfer status of input 10.0 into the RLO bit
10.1 ; Logical AND with the status of 10.1

> » >

10.2 ; Logical AND with the status of 10.2

Q0.0 ; Assign status of the RLO bit to output Q0.0
3. Create Organization Block OB1
4. Insert the unconditional block call
JUPB1 //Unconditional Call
5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-21

Conditional Call

JC PBn = Unconditional Call JC PB12
JC FBn = Unconditional Call JC FB20
JC OBn = Unconditional Call JC OB13

The Instruction JC <logic block identifier> (conditional block call) calls a
logic block of the PB, FB or OB type if a special condition is true.

If the RLO bit in the status word is “1” and the CPU recognizes the
instruction, the program execution branches to the first instruction in the
called Block.

Conditional means, the instruction is only executed if the status of the
RLO bit in the Status Word is “1” prior the CPU tries to execute the
“conditional” instruction.

Conditional Call JC

OB 1

A 10.0

JC PB1—
next Instruction W

PB 1

First Instruction

End of OB 1 Y
End of PB 1
Conditional Call JC
OB 1 FB 1
A 10.0 First Instruction
JC Fbl

next Instruction w

Y
End of FB 1

ZANVaN

End of OB 1

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-22 Statement List Instructions Structure Chapter 2

Conditional Call JC OB13

OB 1 OB 13

A 10.0 / First Instruction

JC Obl13—"
next Instruction w

Y
End of OB 13

End of OB 1

The Blocks PB1; FB1 or OB 13 are only called if the status of the input
10.0 is “1”.

After branching to the called block the instructions in this Block are
executed.

Note:
Result of Logical Operation (RLO).

The RLO (Result of Logical Operation) is the status of a bit in the “Status
Word” (Bit 1) located in the system memory area of the CPU.

The RLO (Result of Logical Operation) is used within binary logical data
processing.

The status of the RLO (Result of Logical Operation) can be logically
connected with operands.

Also operands can set or reset the RLO depending on the status of the
operand.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-23

Practice Exercise 2-2; Conditional Call (JC)
1. Create a “New Project” (Exercise 2—2; Conditional Call)

2. Create the Program Block PB1 (STL presentation) with the
following logical instructions:

A 104 ; Transfer status of input 10.4 into the RLO bit
A 10.5 ; logical AND with the status of 10.5
= Q0.4 ; Assign status of the RLO bit to output Q0.4

3. Create Organization Block OB1
4. Insert the conditional block call

A 10.0 ; Transfer status of input 10.0 into the RLO bit
A 10.1 ; logical AND with the status of 10.1

= Q0.0 ; Assign status of the RLO bit to output Q0.0
JC FC1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-24 Statement List Instructions Structure Chapter 2

Calling Organization Blocks

The organization blocks form the interface between the system program
(the CPU's operating system) and the user program.

Organization Blocks are divided into two categories: those called by the
system program (these have the numbers 1 to 39) and those called by the
users (which have the numbers 40 to 255).

Those called by the system program control cyclic, interrupt-driven and
time-controlled program execution, the programmable controller's restart
performance, and device error recovery procedures.

Like Program Blocks and Function Blocks, these blocks are part of the
user program. The user programs these Organization Blocks himself, and
can thus control the programmable controller's subsequent performance.

Only basic operations may be used in Organization Blocks of this type.

Organization Blocks with numbers above 40 represent special system
program functions, and are not part of the user program; they may be
neither read nor modified.

When the user wants to make use of these special functions, he simply
calls the relevant Organization Block either conditionally or
unconditionally, and the system program does the rest.

Calling Program Blocks

The blocks obtained by structuring the user program are called Program
Blocks. When used correctly, the major Program Blocks provide an
excellent overview of the user program as a whole.

The various process-related functions, e g. those of an actuator, are then
written in the subordinate Program Blocks.

As a rule, a user program consists in the main of Program Blocks.

Only basic operations may be programmed in these blocks.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-25

Calling Sequence Blocks

Sequence blocks are mainly used in conjunction with a "Sequencer control”
Function Block in sequence control systems.

The Function Block then invokes the Sequence Blocks. When the

GRAPH 5 software is used, the entire sequencer, including all command
output and step enabling conditions or transitions, are contained in a
single sequence block.

When GRAPH 5 is not used, the user can program individual sequence
blocks.

In this case, their performance is identical to that of program blocks, and
they may be used as such (for example, when the number of program
blocks proves insufficient).

Only basic operations may be programmed in these blocks.

Calling Function Blocks

Function blocks are used to implement frequently recurring or extremely
complex functions.

A Function Block represents a sequence of operations describing a self-
contained function. It is present in memory only once, and can be invoked
as needed by Program Blocks or other Function Blocks.

A Function Block call is "programmable”, i.e. it can be assigned the
parameters or operands with which the Block is to execute.

This parameter list is an integral part of a f Function Block call.

All STEP 5 operations may be programmed in Function Blocks, but the
program in a Function Block must be written as a statement list.

In addition to user-written Function Blocks, a number of pre-tested or
"standard" Function Blocks are also available.

Function Block FB 0 can be used as "substitute” for Organization Block
OB1

The extended function blocks (FXs), with the exception of the call statement,
are handled in exactly the same way as Function Blocks (FBs).

The FX Function Blocks are not available with all S5 CPUs.

________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-26 Statement List Instructions Structure Chapter 2

2.5 Block End (BE)

Each Block is terminated with the Block End command (BE).
The command “BE” is only displayed in the STL presentation.

Instructions placed after the Block End command (BE) will be
automatically removed as soon the Block is saved.

If the CPU recognizes a Block End, the CPU terminates the program
scan of the current block and causes a jump to the block that called the
current block.

The program scan resumes with the first instruction that follows the
block call statement in the calling program.

OB 1 PB 1

JU PB1 - First Instruction

next Instruction \

Y
BE ;Block End \BE :Block End

Example:

Due to the instruction "JU PB 1" (in OB 1) the CPU sets the CPU
internal address counter to the starting address of the Program Block
PB1.

The return address (old address counter contents plus one) is saved in
the Block Stack (B Stack).

The instructions from PB1 are executed until the CPU recognizes the
“BE” (Block End). Now the CPU pushes the contents of the B Stack into
the address counter.

The instruction executed next is the first instruction that follows the block
call.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-27

Block End Unconditional (BEU)

BEU (Block End Unconditional) terminates the program scan in the
current block and causes a jump to the block that called the current
block. The program scan resumes with the first instruction that follows
the block call.

The current local data area is released and the previous local data area
becomes the current local data area.

OB 1 PB 1
U PB1 ‘)l First Instruction
next Instruction —
_—~
A 10.0
= Q00
JC =M1
BE BEU
M1:
_—
e
EB

The difference between the block end being automatically inserted by
the programming system and the instruction “BEU” is that logic can be
programmed beyond this block end.

If the CPU recognizes the “BEU” instruction, the program scan resumes
with the first instruction that follows the block call.

However, if the BEU instruction is jumped over (conditional jump
“JC =M1"to the label “M1:”), the current program scan does not end
and will continue starting at the jump destination within the block.

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-28 Statement List Instructions Structure Chapter 2

Practice Exercise 2-3; Conditional Call, BEU

1. Create a “New Project” (Exercise 2—3; Conditional Call, BEU)

2. Create Program Block PB1 (STL presentation) with the following
logical instructions:

A 10.0 ; Transfer status of input 10.0 into the RLO bit
= Q0.0 ; Transfer status of the RLO bit into output Q0.0
JC =M1 ; Conditional jump to the label M1
BEU ; Block End Unconditional
M1: A 10.1 ; Transfer status of input 10.1 into the RLO bit
A 10.2 ; logical AND with the status of 10.2
= Q0.1 ; Transfer status of the RLO bit into output Q0.1

3. Create Organization Block OB1

4. Insert the conditional block call
A 10.3 ; Transfer status of input 10.3 into the RLO bit
A 104 ; logical AND with the status of 10.4
= Q0.2 ; Transfer status of the RLO bit into output Q0.2
JCPB1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Testthe PLC user program

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 2 Statement List Instructions Structure Page 2-29

Block End Conditional (BEC)

If RLO =1, then BEC (Block End Conditional) interrupts the program
scan in the current block and causes a jump to the block that called the
current block. The program scan resumes with the first instruction that
follows the block call.

The current local data area is released and the previous local data area
becomes the current local data area.

OB 1 PB 1

_51 First Instruction

JU PBl—
Next Instruction —

_—~

-
\ A 100

Q0.0
T~ BEC

EB

—
——

EB

How the CPU interprets the instruction “BEC” depends on the status of
the RLO bit. If the status of the RLO = 1, then the CPU pushes the
contents of the B Stack into the address counter.

The next instruction executed is the first instruction that follows the
block-call in the Block, which called the block containing the BEC
instruction.

Otherwise, if the status of the RLO = 0, then the BEC instruction is

jumped over, the current program scan does not end and will continue
with the instruction following the BEC command.

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 2-30 Statement List Instructions Structure Chapter 2

Practice Exercise 2—-4; Conditional Call, BEC
1. Create a “New Project” (Exercise 2—4; Conditional Call, BEC)

2. Create the Program Block PB1 (STL presentation) with the
following logical instructions:
A 10.0 ; Transfer status of input 10.0 into the RLO bit
= Q0.0 ; Transfer status of the RLO bit into output Q0.0
BEC ; Block End Conditional
A 10.1 ; Transfer status of input 10.1 into the RLO bit
A 10.2 ; logical AND with the status of 10.2
= Q0.1 ; Transfer status of the RLO bit into output Q0.1

3. Create Organization Block OB1

4. Insert the conditional block call
A 10.3 ; Transfer status of input 10.3 into the RLO bit
A 104 ; logical AND with the status of 10.4
= Q0.3 ; Transfer status of the RLO bit into output Q0.3
JC PB1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Testthe PLC user program

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-1

3 Bit Logic Instructions

Bit Logic Instructions are described in the following chapter.

Binary Logical Instructions

Bit logic instructions work with two digits, 1 and 0. These two digits form
the basis of a binary number system. The two digits 1 and 0 are called
binary digits or bits. In the world of contacts and coils a 1 (true) indicates
activated or energized, and a 0 (false) indicates not activated or not
energized.

The bit logic instructions interpret the signal status of 1 and 0 and
combine them according to Boolean logic. These combinations produce
a result of 1 or O that is called the “result of logic operation” (RLO).

Boolean bit logic applies to the following basic instructions:

Name Mnemonics
AND A
OR O
Assignment =

Nesting Open

(
)

Nesting Close

In addition to the logic operations (O, A, X) one more operation is
necessary for a signal assignment. The assignment is the output of a
logical connection.

The destination of an assignment can be an Output, a Memory location
(Flag, Variable) or even an Input.

The first instruction of a logic one (1) bit connection is called "First
Check".

In nested logic operations single expressions are separated using
parenthesis ().

All logic connections follow the rules of the Boolean bit.

The logic operations (O, A, X) can be negated. The letter N following the
mnemonics of the instruction indicates the negation.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-2 Bit Logic Instructions Chapter 3

Combinations of the Logical Instructions

Name Mnemonics
AND NOT AN
OR NOT ON
AND - with Nesting Open A(
OR - with Nesting Open O(
Nesting Closed )

Processing the Result of a Logic Operation

The result of the logic operation is the signal state in the CPU that is
used for the further processing of binary signals. The RLO can be
logically combined with the signal state of an operand or an operand
which signal stage dependent on the RLO.

Scan statements are used to scan the signal states of operands. A scan
statement also contains the directive with which the signal state
scanned is to be logically combined with the RLO in the CPU:

Example:
A 10.0 ;Scan input 1 0.0 for "1" (TRUE) and AND
AN 10.1 ;Scan input 1 0.1 for "0" (FALSE) and AND
0] 10.2 ;Scan input 1 0.2 for "1" (TRUE) and OR
ON 10.3 ;Scan input 1 0.3 for "0" (FALSE) and OR

Result of the scan

To be precise, it is not the actual signal state of the operand scanned that is
logically combined with the RLO; instead, a result is generated from the scan.
It is this result that is then processed further.

In a scan for "1", the result is identical to the signal state of the operand
scanned. In a scan for "0", on the other hand, the result is the negated signal
state of the operand scanned.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-3

The result of a logical connection of two or more operands is called

RLO.
Example RLO:

Line No.: | STL Instruction thsetg[gsrg;d RLO
0001 @] 1.1 0 0
0002 @] 11.2 1 1
0003 @) 1.3 0 1
0004 A 11.4 1 1
0005 = Q04 1 1
0006

The RLO is 1 bit information saved in a CPU register (Status Word).
The value of the RLO can be therefore "0 or "1".

If in a new logical connection (line 1), the state of the operand ("0 or "1")
is transformed into the RLO bit. The state of the operand is not changed.

The first instruction in a new logical connection is called “First Scan”.

In the following lines the contents of the RLO are logically connected
with the status of the operands (lines2 to 4).

This procedure is continued until the RLO is assigned to an operand
(line 5).

Such an assignment is called “RLO delimiting command”.
In line 5 the RLO delimiting command (= Q0.4) is executed.
The status of the RLO is assigned to the output Q0.4.

The First Scan instruction has a special significance as the result of this
statement is entered directly into the RLO as the result of the logic
operation. The "old" RLO is thus lost. A first scan always represents the
beginning of a logic operation.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-4 Bit Logic Instructions Chapter 3

First Scan instruction

If a new logical connection starts, the contents of the first operand are
transferred to the RLO.

The RLO is independently set to the status of the first operand of a new
logical connection whether the instruction has an AND (A), an OR (O),
or an EXCUSVE OR (X) command.

First Scan

e
110 — & A 1 1.0
11.1 — = Q0.0 a 1 1.1
/ / = Q 0.0
= 00.1 = Q nll
0 1 0.2
103 1 0 1 0.3
. — == —
10.3 — - = Q0.2 - S
A 1 0.4
11.0 111 Q0.0
|| ANy CH
Q0.1
—(H
10.2 Q0.2
|| CH
10.3
| |
1 [

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3

Example:

Bit Logic Instructions

Page 3-5

Both examples have precisely the same behavior.

The assignment (=1 1.2, line n) delimits the RLO. In the next line (line n+1) a
new logical connection starts (first scan).

The RLO is put on the state of the operands (I 1.3), independent of the type

of command.
Line STL Instruction
n = 1.2
n+1 O 1.3
n+2 O 1.4
n+3 = Ql1
n+4 A 1.5
n+5 O 1.6
n+o6 = Q12

STL Instruction

o »

O O

11.2
11.3
11.4
Q1.1
115
11.6
Q1.2

Both examples have precisely the same behavior.

The assignment (=1 1.2, line n) delimits the RLO. In the next line (line n+1) a
new logical connection starts (first scan).

The RLO is put on the state of the operands (I 1.3), independent of the type

of command.
Line STL Instruction

n = 11.2
n+1 ON 113
n+2 O 1.4
n+3 = Q11
n+4 ON 115
n+5 @) 1.6
n+6 = Q1.2
n+7 BE

__________________________________________________________________________________________________________________________|
STEP® 5 S5 for Windows® Training

TTl Trans Tech International© 2013

STL Instruction

AN

AN

BE

11.2
11.3
| 1.4
Q1.1
11.5
11.6
Q1.2



Page 3-6 Bit Logic Instructions Chapter 3

Practice Exercise 3-1; Result of the Logic Operation, Status

Program
execution

AND - Function 1. Logic RLO STAT|RLO STAT|RLO STAT|RLO STAT
Connection

1.0 I A I 1.0 0 0 1 0 1

1% Status |2™ Status |3 Status |4" Status

111 = A I 1.1 0 0 0 1 1
Qo1 = Q 01 0 0
Q0.0 = Q 00 0 0
_ 2. Logic I U —
OR - Function Connection

11.2 I o 1 12 0 0 1 0 1

112 —— o | 13 0 0 0 1 1

Q0.2 = Q 02 L I R
T N

RLO
STAT

Result of Logic Operation ;
Status or Signal Level

The result of the logic operation generated by scan statements is used
as the basis for executing (RLO "1") or not executing (RLO "0") these
conditional operations. The conditional operations do not change the
RLO making it possible to process several conditional operations with
the same RLO.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-7

RLO delimiting
An assignment of the RLO is a delimiting instruction
The next logical instruction will start a new logical connection.
Assignments (= Q0.1; = M0.0) or SET and RESET (S. M0.0, R A0.0) are
RLO delimiting commands.

RLO delimiting Instructions
In this table all types of RLO delimiting instructions STEP®7 provides

are listed.

RLO delimiting Operation Example
Assignment = M11, = Q1.1

Set Instruction S MO0.1; S Q0.1

Reset Instruction R MO0.1; R Q0.1
Nesting Open / Close A(, Of(, etc

Instruction

Counting Instruction CUCl, CDhcC2

Timer Instruction SPT1, SET2etc
Jump Instruction JU =M001, JC =MO002, (JZ, JP; JN,

JM, etc.)

S5 Block Call JC PB10; JU FB22;; etc.
Block End Instructions BE, BEU, BEC
(Return from S5 Block Call)

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-8 Bit Logic Instructions Chapter 3

3.1 Basic Rules of Boolean Algebra

The AND instruction is executed before the OR instruction

Rule: AND before OR.

Conversion AND / OR

Executing an AND function whose output is inverted is identical with one
OR function whose inputs are inverted.

I0.0 I1.0 Q0.0 ros unﬂ|_|
| I I I I @_| = |/|
I 1.0
L1
10.0 11.0 OR
0.0 | 11.0 | AND | Q0.0 negated | negated | Q0.0
0 0 0 1 1 - .
0 1 0 1 1 0 !
1 0 0 1 0 - .
1 1 1 0 0 0 0

Conversion OR / AND

Executing an OR function whose output is inverted is identical with one
AND function whose inputs are inverted.

I ul.uI Q DC}D]—| — | I DI,.,E: I 1I_|]I 0 DC'D]_|
I 1I.l]I
00 0 OR Q0.0 nelgoé(t)ed nelg:]Lé(t)ed ggl[c))
0 0 1 1 1
1 0 0
0 1 0 1 0

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-9

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-10 Bit Logic Instructions Chapter 3

Example of a Logical Connection

Four sensors (S1, S2, S3 and S4) are installed in a system. If at least
two sensors detect a faulty condition a warning signal should be
generated.

The logic connections necessary are listed in the table below:

S1 S2 S3 S4
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0 Warning
4 0 0 1 0
5 1 0 1 0 Warning
6 0 1 1 0 Warning
7 1 1 1 0 Warning
8 0 0 0 1
9 1 0 0 1 Warning
10 0 1 0 1 Warning
11 1 1 0 1 Warning
12 0 0 1 1 Warning
13 1 0 1 1 Warning
14 0 1 1 1 Warning
15 1 1 1 1 Warning

From the table above the logic functions can be programmed. From the
sixteen (16) possibilities eleven (11) indicate a warning.

It is also possible to use the inverted function. A warning is always
generated except for the following conditions:

S1 S2 S3 S4
0 0 0 0 0 No Warning
1 1 0 0 0 No Warning
2 0 1 0 0 No Warning
4 0 0 1 0 No Warning
8 0 0 0 1 No Warning

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-11

A AND Function

Format: A <Bit>

Address Data type Memory area

<Bit> BOOL LQ, ML D,T,C

The AND (A) checks whether the state of the addressed bit is "1"
(TRUE) or "0" (FALSE), and AND’s the test result with the RLO.

Status word

cCCl1 | CCO| ov (ON) OR | STA | RLO | /FC

writes: - - - - X X X 1
Example:
STL Program Relay Logic
Power rail ——
A 10.0 1 0.0 signal state 1 T MO contact
A 10.1 1 0.1 signal state 1 == NC contact
= Q0.0 2 0.0 signal state 1 / Coil
—
Logical AHD
I 0.2 I 0.3 I 0.4 Qg o.1
— | || 1 _H
Logical AHD ; Logical ANWD
I 0.2 —1 & A I 0.2
I 0.3 — A I 0.3
I 0.4 —f = Q0.1 AN I 0.4
= g 0.1

In the example above the inputs |1 0.2 and | 0.3 must have the signal
state of “1” and the input 10.4 must have the signal state of “1” to
activate the output Q0.1

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-12 Bit Logic Instructions Chapter 3

Practice Exercise 3-2; Logical AND
A compressor K1 should be switched on if the following conditions are
fulfilled:
ON — Switch S1 in its ON position.
Pressure switch S2 must be closed (operated).
The security valve S3 must be closed (not operated).

The oil pressure switch S4 must be closed (operated).

Function PLC Operand

S1 has the signal state of "1" if operated |1 0.0

S2 has the signal state of "1" if operated |1 0.1

S3 has the signal state of "0" if operated |1 0.2

S4 has the signal state of "1" if operated |1 0.3
K1 Q0.0

Tasks:
1. Write a PLC program with the S5 Blocks PB10 and OB1.
2. Transfer of the program into the S5 TEST PLC.
3. Test the PLC program.

IF the input | 0.0 is “ON”
AND the input 1 0.1 is “ON”
AND NOT the input 1 0.2 is “ON”
AND the input | 0.3 is “ON”

|S the output Q 0.0 “ON”

With:

IF A/O
AND A
AND NOT AN
IS =

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3

O OR Function

Format: O <Bit>

Bit Logic Instructions

Page 3-13

Address

Data type

Memory area

<Bit>

BOOL

LQ,M, L D,T,C

The OR (O) Function checks whether the state of the addressed bit is
"1" or "0" (FALSE), and OR’s the test result with the RLO.

Status word

CC1l1|CCO ov (O OR STA | RLO /[FC
writes: - - - - X X X 1
STL Program Relay Logic
Power rail —
I 0.0 signal state 1 e [ 1'0.1 signal state 1
0 10.0 MO contact T T NO contact
0 10.1
= Q0.0 1 0.0 signal state 1 / Coil

The output of an OR function has the signal state of "1" if one or several
inputs have the signal state of "1".

Only if all inputs have the signal state of "0", the output of an OR
function has the signal state of "0".

Logical OR

0 0.1

_H

TTl Trans Tech International© 2013

STEP® 5 S5 for Windows® Training



Page 3-14 Bit Logic Instructions Chapter 3

O OR Function (continued)

Logical OR

I 0.2 — =1

I 0.3 —0

I 0.4 = 0 o0o.1

; Logical OR

0 I 0.2
O I 0.3
0 I 0.4
= 0 0.1

In the example above one of the inputs |1 0.2 and | 0.4 must have the
signal state of “1” or the input 10.3 has the signal state of “0” to activate
the output Q0.1

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-15

Practice Exercise 3-3; Logical OR

A message should be displayed if one of the following conditions are
true:

Pressure switch S1 indicates “no Pressure”
The security pressure switch S2 indicates “Pressure to high”
The motor temperature switch S3 indicates “Temperature to high”

The compressor temperature switch S4 indicates “Temperature to high”

Function PLC Operand
S1 has the signal state of "1" if “no Pressure” 10.0
S2 has the signal state of "1" if “Pressure to high” 10.1

S3 has the signal state of "0" if “Temperature to high” |1 0.2

S4 has the signal state of "0" if “Temperature to high” |1 0.3
K1 Q0.0

Tasks:
1. Write a PLC program with the S5 Blocks PB10 and OB1.
2. Transfer of the program into the S5 TEST PLC.
3. Test the PLC program.

IF the input 1 0.0 is “ON”
OR the input 1 0.1 is “ON”
OR NOT the input 1 0.2 is “ON”
OR NOT the input 1 0.3 is “ON”
IS the output Q 0.0 “ON”

With:

IF A/O
OR O
OR NOT AN
IS =

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-16 Bit Logic Instructions Chapter 3

NAND Function

A NAND function is an AND function with a negated output. STEP® 5
does not know a special NAND function.

The following logical connections are possible to represent a NAND
function:

;HAHD Function

; Transfer status of input I0.0 into the BLD hit

; logical AHD with the status of I0.1

;: Transfer status of the BRLO bit into output Q0.0

; Transfer inverted status of output Q0.0 into the RLO bit
;: Transfer status of the BRLO bit into output Q0.0

=l : I

=
=N
coooo
oo o KO

HAND Function

Using the Boolean Algebra Rule AND / OR Conversion

;HAND Function

0OH I 0.0 ;: Transfer inverted status of input 10.0 into the RLO bhit
OH I 0.1 ; logical OR with the inverted status of I0.1

= Qg 0.0 ; Transfer status of the RLO bhit into output Q0.0

BE

HAHD Function

I 0.0 0 0.0
L o
Io0.1
2

HAHND Function

I 0.0 —if w=1

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-17

NOR Function

A NOR function is an OR function with a negated output. STEP® 5 does
not know a special NOR function.

The following logical connections are possible to represent a NOR

function:
;HOR. Function
0 I 0.0 ; Transfer status of input T0.0 into the RLO bit
L] I 0.1 ; logical OR with the status of I0.1
= Qg 0.0 ; Transfer status of the RLO bhit into output (0.0
AH g 0.0 ; Transfer inverted status of output Q0.0 into the RLO bit
= Qg 0.0 ; Transfer status of the RLO bhit into output (0.0
BE

HOR Function

(-
=
=

L=
=
=
L=
=
=

-
9

Using the Boolean Algebra Rule AND / OR Conversion

;HOR. Function

AN I 0.0 ; Transfer inverted status of input I0.0 into the RLO hit
AN I 0.1 ; logical AHD with the inverted =status of ID.1

= Q 0.0 ; Transfer status of the BRLO bit into output Q0.0

BE

HOR Function

I 0.0 I0.1 Q 0.0

——11 1 H

HOR Function

I 0.0 —
I 0.1 —

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-18 Bit Logic Instructions Chapter 3

Practice Exercise 3—4; Conveyer Belt, Package Height
The height of packages transported on a conveyer belt should be tested.

As soon as the sensors detect the height of a package the height should
be indicated on a lamp display.

Only one (1) "height" should be displayed (one lamp only). The lamp
should stay on until a new package appears before the sensors (Call of
PB10, only if package present — Conditional Call).

The actual logic should be programmed in the S5 Block PB10.

A conditional call may be used to call the Function PB10 from the OB1.
The condition is true only if the sensor has recognized a package
(Sensor). The sensor “Signal Package Present” should be made visible

with a lamp.
Display Sensor
Height 3
o g () Height3
Height 2
8 9 (O Height2
Height 1
5 E O Height1
ackage
Prese%t o F;)ackag?
resen

Operand Explanation
10.0 Sensor Package Present
10.1 Sensor Height 1
0.2 Sensor Height 2
10.3 Sensor Height 3
Q0.1 Lamp Height 1
Q0.2 Lamp Height 2
Q0.3 Lamp Height 3
Q0.0 Lamp Package Present

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-19

Tasks:
1. Write a PLC program with the S5 Blocks PB10 and OB1.
2. Transfer of the program into the S5 TEST PLC.
3. Test the PLC program.

Block PB 1
IF the sensor "Height 1" is “ON”
AND NOT the Sensor "Height 2" is “ON”
AND NOT the Sensor "Height 3" is “ON”
IS the Lamp "Height 1" “ON”.

IF the sensor "Height 1" is “ON”
AND the Sensor "Height 2" is “ON”
AND NOT the Sensor "Height 3" is “ON”
IS the Lamp "Height 2" “ON”.

IF the sensor "Height 1" is “ON”
AND the Sensor "Height 2" is “ON”
AND the Sensor "Height 3" is “ON”
IS the Lamp "Height 1" “ON".

Block OB1
IF the “Sensor Package Present” is “ON”

IS the Lamp "Sensor Active” “ON”
Only then the Block PB1 is called.

With:

IF A/O
AND NOT AN
AND A
IS =
Only then the Block is called JC

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-20

AND before OR

Bit Logic Instructions

Chapter 3

The O function performs a logical OR instruction on AND functions
according to the rule: AND before OR.

AND before OR

1 0.0
10.1
10.2
10.3

N B ——

10.4
105 Block 2

10.6

[0.7
11.0 Block 3

11.1
Q0.1

nHo »>»0 >»>»>»0 »>Xr>»>r

Block 1

> Q (0.1 =Block 1 ORBlock 2 OR Block 30R 1.1

The “Blocks” indicated in STL are marked in LAD.

AND before OR

Block 1
< I ul.uI I ul.lI I uI.EI I ul.alﬂ 0 o.1
Block 2
<' I ul.4I I ul.ﬁI I ul.ﬁlﬂ
Block 3
( I 0.7 I 1.0
| | | |
I1.1
|

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-21

The “Blocks” indicated in STL can also be recognized in CSF.

AHND bhefore OR

o
ocooo
Wh o

-
oo
@D

&

AND before OR
No Nesting required

Programming an AND before OR function in STL the AND connections
do not be put into parenthesis.

O( Or with Nesting Open
Format: O(

O( (OR nesting open) saves the RLO and OR bits and a function code
into the nesting stack. A maximum of seven nesting stack entries are
possible.

Status Word

CCl1|CCO| oV oS OR | STA | RLO | /FC

writes: - - - - 0 1 - 0

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-22 Bit Logic Instructions Chapter 3

Practice Exercise 3-5; AND before OR
A Relay K1 (Q0.1) is energized if the following conditions are true:
e The signal state of the switch at input 10.0 is “On” and
e the signal state of the switch at input 10.1 is “Off” and
e the signal state of the switch at input 10.2 is “On”.

Also the relay should be energized independent of the signals at 10.0,
10.1 and 10.2. if the switch at the input 10.3 and the switch at the input
10.4 are “On” or the switch at the input 10.5 and the switch at the input
10.6 are “On”.

Tasks:
Write a PLC program with the S5 Blocks PB10 and OB1.
Transfer of the program into the S5 TEST PLC.
Test the PLC program.
Practice Exercise 5-4; AND before OR
IF the input 10.0 is “ON”
AND NOT the input 10.1 is “ON”
AND the input 10.2 is “ON”
OR
IF the input 10.3 is “ON”
AND the input 10.4 is “ON”
OR
IF the input 10.4 is “ON”
AND the input 10.4 is “ON”
IS the output (relay) “ON”.

With:

IF A/O
AND NOT AN
AND A
OR

IS =

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3

OR before AND

A( And with Nesting
Format: A(

Bit Logic Instructions Page 3-23

Open

A( (AND nesting open) saves the RLO and OR bits and a function code
into the nesting stack. A maximum of seven nesting stack entries are

possible.

Status Word

cCCl1|CCO | ov OS OR | STA | RLO | /FC

writes: -

Programming an OR before AND function in STL the OR connections
must be put into parenthesis.

The function A( (AN

D nesting open) is an “RLO delimiting command”

therefore a new logical connection starts with the first instruction after
the parenthesis. The nesting close is not a RLO delimiting command.

OR before AND

A(

O 100

O 101 5
O 102 Block 1
O 10.3

)

A( ,

O 104

8 :8:2 Block 2
A |

O 10.7

O 110 } Block 3

)

A 111

= QO]_ J

> Q (0.1 =Block 1 AND Block 2 AND Block 3AND | 1.1

TTl Trans Tech International© 2013

STEP® 5 S5 for Windows® Training



Page 3-24 Bit Logic Instructions Chapter 3

The “Blocks” indicated in STL are marked in LAD.

OFR hefore AHD
ST SN Ty
I 0.0 I D.4 I D.7 T 1.1 Qg o.1
|| || || || 1
I 0.1 I D.5 I 1.0
|| || ||
.
I 0.2 I D.6 BlﬂCkS
| | | |
S
ro.3 Block 2
Sl
Block 1

The “Blocks” indicated in STL can also be recognized in CSF.

OR hefore AND

I 0.0 — =1
I 0.1 —

I 0.2 —

I 0.3

I 0.4 =1
I 0.5

I 0.6

I 0.7 =1
I 1.0

.1 — = g o.1

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training

TTI

Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-25

Practice Exercise 3-6; OR before AND
A Relay K1 (Q0.1) is energized if

e The signal state of the switch at input 10.0 is “On” or
¢ the signal state of the switch at input 10.1 is “Off” or
¢ the signal state of the switch at input 10.2 is “On”.

Also the switch at the input 10.3 or the switch at the input 10.4 are “On”
and the switch at the input 10.5 or the switch at the input 10.6 are “On”.

Tasks:
Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.
Test the PLC program.

IF the input 10.0 is “ON”
OR NOT the input 10.1 is “ON”
OR the input 10.2 is “ON”
UND
IF the input 10.3 is “ON”
OR the input 10.4 is “ON”
UND
IF the input 10.5 is “ON”
OR the input 10.6 is “ON”
IS the output Q0.1 “ON”.

With:

IF A/O

OR O

OR NOT ON

AND A(
)

IS =

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-26 Bit Logic Instructions Chapter 3

Practice Exercise 3—-7; Normally Open (NO), Normally Closed (NC)

The relay K1 should be energized if the Switch 1 (S1) is operated and
the Switch 2 (S2) is not operated.

The above exercise has the following four (4) possibilities.

NO NO NO NC
S1 ﬁ52 s1 nsz
10.0 0.1 10.2 10.3
PLC PLC
Q0.1 Q0.2

EE K1 EE K1
NC NO NC NC
S1 .,j: _I_ S2 S1 H S2
10.4 10.5 10.6 10.7
PLC PLC
Q0.3 Q0.4

!Kl K

£

Tasks:
Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-27

Converting arelay logic into a PLC Program
Example: Motor ON / OFF with Locking

The simple relay circuit shown in the picture needs to be converted to a
PLC Program.

N
L1 51 s4 S5 6 Kl
| | | _
NO Contact NC NC NC Caoll
Contact Contact Contact
S2
’ ” ’
NO Contact
S3
o ” $
NO Contact
K1
NO Contact
Name FE Name S
Operand Operand
S1 (NO) Push Button |10.0 S4 (NC) Push Button | 10.3
S2 (NO) Push Button | 10.1 S4 (NC) Push Button |10.4
S3 (NO) Push Button | 10.2 S4 (NC) Push Button | 10.5
K1 Relay (Motor On) Q0.0

Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.
Test the PLC program.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-28 Bit Logic Instructions Chapter 3

Using the LAD Editor
Programming an Example using Ladder Diagram (LAD)

The programming of the example is explained using Ladder Logic
(LAD).

Confirming the name in the “ Enter new Block” dialog box the editor
windows is opened and the new block is ready to be programmed.

-
E_] Enter new hlock

Black: Segment: Farmat:

GEE =] * 55 { &7

] Cancel ‘ Help

Selecting Ladder Diagram (LAD) Presentation

The Command Ladder Diagram (LAD) from the Presentation Menu
selects the PLC logic presentation Ladder Diagram.

=
§5 1 S7 for Windows® - [S5 Editor : PB 10 ***]
ui Block Modify Search  Insert BEEESGEEEGN Window  Help
‘ | ﬁ 8 v Statement List (STL) ChrHFs
[T = Control System Flowchart (C5F) ChrH-F7
S| Ladder Diagram (LAD) Ckrl+-Fa
Block Skakement Lisk (STL) hrl+F11

| Instruction | Ope

Display Comments
BEI Display Svmbolic Table

Symbalic Operands
v Display Symbolic Comments

v Format 3TL Automatically

Enlarge Chrl+G
Reduce Chrl+3

Enlarge actual Window to Full Screen Chrl4+F

&/

Lasccler Dizagrarm | LAD} Preseriation if possible

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-29

The workplace is ready for entering the program block PB10.

S5 Programming Software Editor Window, Ladder Diagram
Presentation

=

55/ S7 for Windows® - [S5 Editor, : PB 10 ***]
[iili Elock ModiFy Search Insert Presentation  Window Help

2B | (5 T | 2 2 | 22| (0 B L | = 2
i Segment1 /1 e X e S T T e [ N B
Segment Comment -~

The first segment is opened.
The first line is reserved to enter a comment.

The tool bar Il provides the icons for easy programming. Clicking an icon
with the mouse calls the desired function.

=] 22| 2« of ofrlve] X| Lo 2] E]@] "

Next Segment selection

3|

Previous Segment selection

Enlarge the size of the logic shown in the workplace. The
selected font must be a true type font to allow scaling.

Reduce the size of the logic shown in the workplace. The
selected font must be a true type font to allow scaling.

Draw a line to the right of the insertion mark. If a line is
already to the right of the insertion mark the line is erased. A
line replaces a contact to the right of the insertion mark.

[+ | [ e |

Draw a line to the left of the insertion mark. If a line is
already to the left of the insertion mark the line is erased. A
line replaces a contact to the right of the insertion mark.

1

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-30 Bit Logic Instructions Chapter 3

Draw a line to upward from the insertion mark. If a line is
already exists the line is erased.

Draw a line to downward from the insertion mark. If a line is
already exists the line is erased.

=] =

Insert a contact to the right of the insertion mark. If a contact
|| already exists to the right of the insertion mark the contact is
erased. A line to the right is replaced by a contact.

Insert a contact to the left of the insertion mark. If a contact
"* already exists to the left of the insertion mark the contact is
erased. A line to the left of the insertion mark is replaced by
a contact.

Delete the contact to the right of the insertion mark. The
delete button only works in a logical operational segment.

Bt

Change the selected (mark operand or insertion mark to the
right of the contact) contact from normally open (NO) to
normally closed (NC) or vice versa (NC to NO). The operand
must be defined prior to the change command.

L L
TT

Insert a normally open (NO) contact to the right of the
insertion mark. The insert button only works in a logical
operational segment.

1
-

Insert a parallel branch with a normally open (NO) contact to
the right (and down) of the insertion mark. The insert button
only works in a logical operational segment.

Insert a SR Flip Flop (latch) with a dominating reset input.

Insert a RS Flip Flop (latch) with a dominating set input.

This icon opens a dialog box to select timers.

Ej "‘”’ "“" "r_ ‘

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-31

1 This icon opens a dialog box to select counters.

-:: This icon opens a dialog box to select comparators.

Insert a function block (FB) call. A function block call is only
FE be permitted in a separate segment

Clicking the bottom of the vertical line the insertion mark, a blue cross
appears.

Building a Segment using the Mouse. Click the icon to insert a contact to
the right of the insertion mark. By using the icons explained above the
logic is built.

Program Block BB10

=

$5 / S7 for Windows® - [S5 Editor : PB 10] [Z]['E][Zl1
ﬂw Elock Modify  Search  Insert Presentation indow Help - G x
& | 20| 2 (220 | BB | Bt U | | e = 2
[ Segment1/1 2l2] =] ] ] e X| =] 2] 2[D) ] ] e
Motor OHJOFF with locking ~
I 0.0 I 0.3 I 0.4 I 0.5 g o.0
N L1 L1 L1 CH
I 0.1
{ ¥
I 0.2
{1
0o.0
1

[
|
| £

Mo Praject sdecks] PSH, TTI Modified

ui Block Madifv  Search  Insert  Presentation  Window  Help 0 X
[?']\ISH

B | =) 15| e| 22| 2. 12| B | i |75 | e = <22
ﬂ Segrent /1 _|_| ﬂlﬂ ﬂ

Tag | Instruction | Operand | Comment
:Call Example Motor OHFfOFF with locking
au PE 10
BE
£ >

M Progjesct sadectod PSH, TTI Mk

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-32 Bit Logic Instructions Chapter 3

Practice Exercise 3-8; Motor right/left

The relay logic shown in the picture (motor right, motor left) needs to be
converted to a PLC program.

L1 1 N
l—ﬁl% S2 K2 l
¢ | | A
Caoill
A
¢ 11
S3 K1 K2
+—| #—/—4
Caoill
K2
| |
1
Name PLC Operand
S1 (NC) Motor OFF 1 0.0
S2 (NO) Motor right 10.1
S3 (NO) Motor left 0.2
K1 Relay (Motor right) | Q0.0
K2 Relay (Motor left) Q0.0

Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-33

3.2 Number Systems

In order to understand the definition of variables in the STEP® 5
programming language, the type of numbering systems used in the PLC
technology must be known.

Decimal system
Normally we use the decimal system to indicate numbers.

The decimal number system has the base number of ten (10). Each
number in the decimal system is expressed as a multiple of a power of

ten.
Figure: 0 1, 2, 3, 45 6,7 8, 9,
Base: 10
Value: Power of 10 (Base)
Example: 7411
\—> 1 x 10° = 1 x 1 = 1
1 x 10" = 1 X 10 = 10
4 x 10° = 4 x 100 = 400
> 7 x 10° = 7 x 1000 = 7000
Sum : 7411
Note:
A number by the power of zero (0) is one (1) e.g. 10°=1; 2°=1
160 =1;

A number by the power of one (1) is the number itself. e.g. 10'=10; 21=2
161 =16

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-34 Bit Logic Instructions Chapter 3

Binary Numbers

Binary Numbers can only have two (2) values:
FALSE (Zero (0) or low)
TRUE (One (1) or High)

Therefore the binary number system is used in the digital system
(on/off).

The binary number system has the base number two (2).

Each number in the binary number system is expressed as multiple of a
power-of-two number.

Figure: 0 1,
Base: 2
Value: Power of 2 (Base)
Example: 1001 1011
\—>1x2° =1x 1= 1
»1lx 2 =1x 2= 2
O0x2=0x 4= 0
—> 1 x 2 =1x 8= 8
»1 x 2 =1x 16 = 16
»0x 22 =0x 32= 0
»0x 22 =0x 64= 0
»1 x 2 = 1x 128 = 128
Sum: 155

Eight (8) digits are needed, in order to represent the decimal value of 155.

The maximum value, which can be represented with eight (8) digits, is
decimally 255.

A "digit" in the binary number system is called "bit". It is common that eight (8)
bits are called a Byte.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-35

Hexadecimal Numbers

The example of the binary numbers shows that the number of digits
required to express a large number will increase drastically.

In order to take advantage of the binary numbering system for digital
systems (on/off) and to reduce the number of digits required to express
a large number, four (4) binary digits are combined to create a
hexadecimal digit.

The base number of the hexadecimal system is sixteen (16).

Each number in the hexadecimal number system is expressed as
multiple of a power of "16".

Figure: 0,1, 2 3,4,5 6, 7, 8 9, A(10), B(11), C(12), D(13), E(14), F(15)
Base: 16
Value: Power of 16 (Base)
Example: 4ATF
|—>Fx16°=15x 1= 15
7x16 = 7 x 16 = 12
Ax 16 = 10 x 256 = 2560
4x16° = 4 x4096 = 16384
Sum: 19071

The link between binary numbers and hexadecimal numbers

Power of 2 (Base 2) 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

BinaryNumber | 0 |1 [0 |1 1]0|1|1|l1|1|1|0ofo|1|1]1

Power of 16 (Base 16) 163 162 161 160
Hexadecimal Number 5 B E 7
Decimal Number 23 527

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-36 Bit Logic Instructions Chapter 3

Hexadecimal Numbers

Four (4) bits are required to represent a single hexadecimal number.

Hexadecimal - Numbers

81 4| 2|1
Decimal

0 |0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 |0 1 0 0
5 |0 1 0 1
6 0 1 1 0
7 10 1 1 1
8 1 0 0 0
9 1 0 0 1
A(10)| 1 0 1 0
B(11| 1 0 1 1
ca|1 | 1] o] o
D(13)| 1 1 0 1
E(14) | 1 1 1 0
F(15 | 1 1 1 1

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-37

BCD numbers

The BCD numbering system is based on the hexadecimal number
system with the agreement that only the numbers, which are present in
the decimal number system, are used.

Due to this rule the decimal number system and the BCD number
system have a base of ten (10).

The BCD number system as well as the hexadecimal numbering system
uses four (4) bits for the representation of each BCD digit.

Each number in the BCD number system is expressed as multiple of a
power of "10". Only the numbers 0 to 9 are used.

The advantage of the BCD numbering system is that the represented
numbers are easier to read. However the disadvantage of the BCD
numbering system is that it requires substantial conversion and memory

power.
Figure: 0, 1, 2 3,4,05 6, 7, 8 9,
Base: 10
Value: Power of 10 (Base 10)
Example: 7411
\—> 1x 10° = 1 x 1= 1
1x 10" = 1x 10 = 10
4 x 100 = 4 x 100 = 400
— > 7 x 10° = 7 x 1000 = 7000

Sum : 7411

The link between binary, BCD, and hexadecimal numbers

Power of 2 (Base 2) [515] 141312 LU[10] 0T 8] [, 718 [ 5[4 [ 58] 52] 5[

BinaryNumber | 0 |1 [0 |1 1]0|0|1|lo|1|1|0]0O|1|1]1

Power of 10 (Base 10) 103 102 101 100
BCD Number 5 9 6 7
Decimal Number 5 967

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-38

BCD Example: Thumb wheel switch

Thumb Wheel Switch

(BCD-Code)
[ N o | )
N o |
0100 0111 1001 0010
x 1000 x 100 x 10 x1

Bit Logic Instructions

Chapter 3

BCD - Numbers

8 4 2 1
Decimal

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 0 1
11 1 0 1 1
12 1 0
13 1 0 1
14 1 1 1 0
15 1 1

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-39

Practice Exercise 3-9; Seven Segment Display

The four switches S0, S1, S2, and S3 will be used to control a seven-
segment display.

A Program Block (PB10) should be programmed to display the number.

The switches have the following values:

Switch | Value | PLC Operand
SO 2° 10.0
S1 2! 0.1
S2 22 10.2
S3 23 10.3

Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-40 Bit Logic Instructions Chapter 3

Switch Decoding

10.3 .
10.0 0.1 0.2 . Display
NUmIEEs one (1) | two (2) | four (4) e|(%;1t et FW 2
0 0 0 0 0 F3.0 1
1 1 0 0 0 F3.1 2
2 0 1 0 0 F3.2 4
3 1 1 0 0 F3.3 8
4 F3.4 16
5 F3.5 32
6 F3.6 64
7 F3.7 128
8 F2.0 256
9 F2.1 512
A F2.2 1024
B F2.3 2048
C F2.4 4096
D F2.5 8192
E F2.6 16384
F F2.7 -32768

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-41
7 Segment Decoding
A
F B
E
C
D
g Segment | Segment | Segment | Segment | Segment | Segment | Segment
:5; Flag A B C D E F G
e Q0.0 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6
0 | F3.0 X X X X X X
1 |F31 X X
2 | F3.2 X X X X X
3 | F3.3 X X X X X
4 | F3.4 X X X X
5 | F35 X X X X
6 | F3.6 X X X X X
7 | F3.7 X X X
8 | F2.0 X X X X X X X
9 |F21 X X X X X
A | F2.2 X X X X X X
B | F2.3 X X X X X
C |F24 X X X X
D | F25 X X X X
E | F2.6 X X X X
F | F2.7 X X X
X Output (Q..) must be “ON”

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-42 Bit Logic Instructions Chapter 3

3.3  Setting / Resetting Bit Addresses

The value of “1” (true) or the value of “0” (false) can be assigned to an
Address (memory location, operand) when the RLO has a value of “1”
(true) by using the instructions “S” (Set) or “R” (Reset).

S — Set instruction

Format: S <Bit>

Address Data type Memory area

<Bit> BOOL l,Q, M, L, D

S (set bit) places a "1" (true) in the addressed bit if RLO = 1. The “S”
instruction is an RLO delimiting Instruction.

Status word

cci1|cCco|ovy |OS |OR |STA |RLO |/FC

writes: | - - - - 0 X - 0
Example
STL Program Relay Logic
A 10.0 L1— l t
S Qo4 100 = Qo4 =—10.1
A 10.1 NO NO NO
R Q04 Contact Contact Contact
Signal State Diagrams Cant?& £
oo _I LI ¢
o1 ! /] /]
: Q0.4 Coll Coil
Q04 _| 0 N —+ I

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-43

R — Reset instruction

Format: R <Bit>

Address Data type Memory area

<Bit> BOOL l,Q, M, L, D

R (reset bit) places a "0" in the addressed bit if RLO = 1. The “R”
instruction is an RLO delimiting Instruction.

Status word

cCCl|CCO|OV |OS OR STA RLO |/FC

writes: - - - - 0 X - 0
Example
STL Program Relay Logic
A 10.0 L1— l 1
S Qo4 10.0 =— Qo4 =—10.1
A 10.1 NO NO NO
R Q04 Contact Contact Contact
Signal State Diagrams Cﬂntzﬁ B
oo_I 11 |
o1 ! /] /]
'fl' Q0.4 | Coil Coil
Q04 _| 0 N — 4 I

The output Q 0.4 is set to “1” as soon as the input | 0.0 has a status of
“1” (actually the RLO must be “1”). If the input | 0.0 goes back to “0” the
output Q 0.4 remains set.

The output Q 0.4 is reset to “0” as soon as the input | 0.1 has a status of
“1” (actually the RLO must be “17).

In the example it is possible that both inputs (1 0.0 and | 0.1) are “1”
(true). In this case the output Q 0.4 is set to “1” and immediately reset to
“0”. The output Q 0.4 therefore remains reset (false) because the “R”
(reset instruction) follows the “S” (set instruction).

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-44 Bit Logic Instructions Chapter 3

Note:
Set Dominant

If a latch (RS Flip Flop) should remain set (“1” — true) when both inputs
(set and reset) of the latch are “1” (true), the “R” (reset instruction) must be
programmed prior the “S” (set instruction).

Reset Dominant

If a latch (SR Flip Flop) should be reset (“0” — false) when both inputs (set
and reset) of the latch are “1” (true), the “S” (set instruction) must be
programmed prior the “R” (set instruction).

RS Flip Flop

With the button “RS” a RS Flip Flop with a dominating set input is
inserted.

CSF Presentation

RS Flip Flop {(Latch) - Dominating Set -
I 0.0 B Q 0.0
I 0.1 R

I o.2 — 5 o —

LAD Presentation

RS Flip Flop {(Latch) - Dominating Set -
g o.0
I 0.0 I 0.1
{ | { | R
I 0.2
| s Q—

STL Presentation

Tag | Instruction | Operand Comment
; RS Flip Flop (Latch) - Dominating Set -
A I 0.0
A I 0.1
R Q 0.0
A I 0.2
5 0 0.0
HOP 1]

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3

SR Flip Flop

Bit Logic Instructions

Page 3-45

With the button “SR” a SR Flip Flop with a dominating reset input is

inserted.

CSF Presentation

SR Flip Flop {Latch})

— &

Q0 0.0

s

I 0.2

—l R 0

- Dominating Reset -

LAD Presentation

SR Flip Flop {Latch) - Dominating Reset -
Qg 0.0
I 0.0 I 0.1
{ { s
I0.2
[ R 0
STL Presentation
Tag |In5tructiun Operand Comment
; SR Flip Flop {(Latch)} - Dominating BReset -
A I 0.0
A I 0.1
s Q 0.0
A I 0.2
R Q 0.0
HOP 0

The instruction “NOP 0” is only required to convert the STL presentation

into LAD or CSF presentation.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-46 Bit Logic Instructions Chapter 3

Practice Exercise 3-10; Latch
A light needs to be switched on and off from three (3) different locations.

If an ON switch and an OFF switch are operated at the same time the
light should stay on.

Device PLC Operand
S1: Switch ON (Location 1) |1 0.0

S2: Switch OFF (Location 1) |1 0.1

S3: Switch ON (Location 2) |10.2

S4: Switch OFF (Location 2) |1 0.3

S5: Switch ON (Location 3) |10.4

S6: Switch OFF (Location 3) |1 0.5

H1: Light Q0.0

Write a PLC program with the S5 Blocks PB10 and OB1.
Transfer of the program into the S5 TEST PLC.
Test the PLC program.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-47

3.4 Edge Detection

STEP® 5 does not provide Instructions to detect the rising and falling
edge (flange detection) of a signal (RLO).

Positive Flange (positive edge)
1 r
0

Negative Flange (negative edge)

Y

The “Edge Detection” can be programmed using bit operations. The
instructions require “Flange Memory”. This “Flange Memory” must be a
bit address that fulfills the following requirements:

The “Flange Memory” may not be modified at any other location within
the PLC program.

The status of the “Flange Memory” must be available in the next OB1
cycle.

The following “Flange Memory” operands (Bit) fulfill these requirements:
Flag for instance:  F10.0, F15.1 etc.
Data Bit in a Data Block forinstance: D3.1, D2.14

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-48 Bit Logic Instructions Chapter 3

Positive Edge Detection

. 10B1 Cycle
- ﬁ——'

i// |__-ON (100)

Input Signal (RLO) =—

Flange Memory i /77
(Temporary Storage) ==

-STRG (F 1.1)

PLS (F10)

Output Pulse (RLO)

If a positive edge of the Input Signal “-ON” (1 0.0) is detected, the Output
Pulse “-PLS” F1.0) is “1” (true) for one (1) OB 1 scan cycle. The
previous RLO state is stored in “Flange Memory”.

Positive Edge Detection (STL — absolute operands)

Tag | Instruction | Operand | Comment
;Po=sitive Flange (Edge) detection

F: % T o.0 Signal to detect the Flange
AH F 1.1 Edge Flag
= F 1.0 Edge Pul=se
B I 0.0 Signal to detect the Flange
= F 1.1 Edge Flag

During each program scan cycle, the signal state of the Input Signal
(RLO) bit is compared with the previous cycle to see if there has been a
state change.

The previous RLO state must be stored in the “Flange Memory” (Bit) to
make the comparison. If there is a difference between current and
previous "0" state (detection of rising edge), the Output Pulse (RLO) bit
will be "1".

Positive Edge Detection (STL —symbolic operands)

Tag |Inshucﬁnn | Operand |Cununent
;Positive Flange {(Edge) detection

F:5 —0OH Signal to detect the Flange
AH —STRE Edge Flag
= -PLS Edge Pul=se
F.% —0H Signal to detect the Flange
= —STRG Edge Flag

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-49

Positive Edge Detection (LAD — two segments)

Segment 1
Positive Flange {(Edge) detection
OH STREG PLS
— | 1 H
Segment 2
Pozitive Flange {(Edge) detection
OH STRG
— | CH

Negative Edge Detection

1Cycle (OB 1)

//—
Input Signal (RLO) ! 10.0 -OFF

//—
Flange memory | F11 -STRG
(Temporary storage) L
Output Pulse (RLO) // F10 -PLS

If a negative edge of the Input Signal “-OFF” (1 0.0) is detected, the
Output Pulse “-PLS” F1.0) is “1” (true) for one (1) OB 1 scan cycle. The
previous RLO state is stored in “Flange Memory”.

Negative Edge Detection (STL — absolute operands)

:Hegative Flange (Edge) detection

.} I 1.0 S5ignal to detect the Flange
AN F 1.1 Edge Flag

= F 2.0 Edge Pul=se

.} I 1.0 S5ignal to detect the Flange
= F 2.1 Flag Memory

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-50 Bit Logic Instructions Chapter 3

Negative Edge Detection (STL — symbolic operands)

:Hegative Flange (Edge) detection
.} -0FF Signal to detect the Flange
AH -5TRG Edge Flag
= -PLS H Edge Pulse
A -0FF Signal to detect the Flange
= -FLGM Flag Memory
Segment 1
Hegative Flange (Edge) detection
OH STRG PLS
— e I
Segment 2
Hegative Flange (Edge) detection
OH STRG
— H

During each program scan cycle, the signal state of the Input Signal
(RLO) bit is compared with the previous cycle to see if there has been a
state change.

The previous RLO state must be stored in the “Flange Memory” (Bit) to
make the comparison. If there is a difference between current and
previous "0" state (detection of rising edge), the Output Pulse (RLO) bit
will be "1".

_____________________________________________________________________________________________________________________
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 3 Bit Logic Instructions Page 3-51

Practice Exercise 3-11; Motor ON/OFF, Edge Detection with Latch
Two (2) push buttons are used to switch a Motor (Latch) ON and OFF.

To be independent of the activation of the push buttons, edge detection
should be used.

For safety reasons the OFF push button should have a NO contact (activating
the OFF push button puts a “0” at the input).

If a “wire brake” occurs at the OFF push button the motor should be switched
off and it should not be possible to start the motor with the ON push button.

Device PLC Operand
Pushbutton ON 10.0
Pushbutton OFF 10.1

Motor Relay (Latch) Q0.0

Flange Memory (ON —, Pos.) |F 10.1
Flange Memory (OFF — ,Neg.) |F 10.3

Pulse Positive (not required) F 10.0

Pulse Negative (not required F 10.2

Write a PLC program with the S5 Blocks PB10 and OB1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 3-52 Bit Logic Instructions Chapter 3
|

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-1

4 Timing Functions (Timer) and Counters

The Timing functions and Counters are similarly constructed software
functions, using 16-bit word operands.

4.1  Timing Functions (Timer)

Timing functions are used to implement waiting periods and monitoring
times in the PLC program

The timing functions are constructed using 16-bit word operands.
r With the command Timer... a dialog box is opened to select one Timer
. from a choice of five timer functions.

Timer signals overview

SP, SE, SR, SS, SF |Start timer

TV Time Constant KT

The Time Constant occupies a 16 bit word.

The Time constant is entered as a 3 digit BCD number, the
Time value followed by a decimal point and a multiplication

factor.
min. KT 1.0 = 10ms max. KT 999.3 = 2h, 46m, 25s
The following multiplication factors are available:
Time Base |Accuracy Example [Time
0=0.01s 10ms KT 500.0 |5 Seconds
1=0.1s 100ms KT 50.1 |5 Seconds
2=1s 1s KT 5.2 5 Seconds
3=10s 10s KT 100.3 |1000 Seconds

R Reset

BI Current counter value (Binary)

DE Current counter value (BCD)

Q Output

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-2 Timing Functions (Timer) and Counters Chapter 4

Area in Memory

Timers have an area reserved for them in the memory of your CPU. This
memory area reserves one 16-bit word for each timer address.

The following functions have access to the timer memory area:
Timer instructions

Updating of timer words by means of clock timing. This function of your
CPU in the RUN mode decrements a given time value by one unit at the
interval designated by the time base until the time value is equal to zero.

Time Value

Bits O through 9 of the timer word contain the time value in binary code.
The time value specifies a number of units. Time updating, decrements
the time value by one unit at an interval designated by the time base.
Decrementing continues until the time value is equal to zero. The time
value is loaded into the accumulator 1 in the following format.

KT xyz.t
e Where t = the time base (that is, the time interval or resolution)
e Where xyz = the time value in binary coded decimal format

The maximum time value that you can enter is 9,990 seconds, or
2H_46M_30S.

Time Base

Bits 12 and 13 of the timer word contain the time base in binary code.
The time base defines the interval at which the time value is
decremented by one unit. The smallest time base is 10 ms; the largest is

10 s.
Time Base Binary Code for the Time Base
10 ms 00
100 ms 01
1ls 10
10s 11

Values that exceed 2h46m30s are not accepted. A value whose
resolution is too high for the range limits (for example, 2h10ms) is

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-3

truncated down to a valid resolution. The general format for SS5TIME has
limits to range and resolution as shown below:

Resolution Range Time Constant

0.01 second | 10MS to 9S 990MS KT 1.0 — KT999.0
0.1 second |100MSto 1M 39S 900MS |KT 1.1 — KT 999.1
1 second 1S to 16M_39S KT 1.2 — KT999.2
10 seconds | 10S to 2H_46M_30S KT 1.3 — KT999.3

Bit Configuration in ACCU 1

When a timer is started, the contents of ACCUL1 are used as the time
value.

Bits 0 through 11 of the ACCU1-L hold the time value in binary coded
decimal format (BCD format: each set of four bits contains the binary
code for one decimal value). Bits 12 and 13 hold the time base in binary
code.

The following figure shows the contents of ACCU1-L loaded with timer
value 127 and a time base of 1 second:

15 BT .0
wlxzlv]jojolaololvjololalojol1] 11
m, o e e h e i
1 2 7
L A
i
Time hase Time valug in BCD (0 to 999)

1 second

Irrelevant: These hits are ignored when the timer is started.

Starting a Timer

A timer is started as soon as signal (RLO) at the start input (LAD, CSF)
or at the start operation (STL) changes its state as indicated in the table
below.

This change of the signal state of the RLO is compulsory for starting a
timer

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-4 Timing Functions (Timer) and Counters Chapter 4

For starting a timer the time base from accumulator 1 is used. In
accumulator 1 are the BCD values for time value and time basis.

For starting a timer different functions can be used:

Name Timer function Start with the change of the
SP Pulse timer Signal State from "0" to "1"
SE Extended pulse timer Signal State from "0" to "1"
SD On-delay timer Signal State from "0" to "1"

Retentive on-delay

SS .
timer

Signal State from "0" to "1"

SF Off-delay timer Signal State from "1" to "0"

Reset Timer (R)

Format: R <timer>

Address | Datatype | Memory area Description

<timer> TIMER T Timer number, range depends on CPU

R <timer> stops the current timing function and clears the timer value
and the time base of the addressed timer word if the RLO transitions
from Oto 1.

Status word

cCl1|CCO0 | ov oS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

Tag Instruction |0perand Comment
; Example Timer Reset

F.9 I 0.0 ; Check the =ignal state of input I 0.0
R T 1 : The timer is reset if the BRLO0 changes from "0" to "1"

BE

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-5

Enable Timer — FR (Free)

Format: FR <timer>

Address | Datatype | Memory area | Description

<timer> TIMER T Timer number, range
depends on CPU

When the RLO transitions from "0" to "1", FR <timer> clears the edge-
detecting flag that is used for starting the addressed timer. A change in
the RLO bit from 0 to 1 in front of an enable instruction (FR) enables a
timer.

Timer enable is not required to start a timer, nor is it required for normal
timer instruction. An enable is used only to re-trigger a running timer,
that is, to restart a timer. The restarting is possible only when the start
instruction continues to be processed with RLO = 1.

Status word

CCl1|CCO0| oV oS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

=

=

[i=3(E3

Segment 2 /2 _|J ﬂﬂ j

Tag | Instruction | Operand | Comment
sExample: Enable Timer - FR {(Free)

I 0.0

T 1 ; Enable Timer T1

I 0.1 ; Start Timer T1

KT 500.0 : Timer preset 5 seconds in Accou 1
T 1 ; Puls Timer T1

T 1 ; Check signal state of Timer T1

Note:

The instruction Enable Timer — FR (Free) is only available in
STL — Presentation.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-6

Pulse Timer (SP)

Timing Functions (Timer) and Counters Chapter 4

Format: SP <timer>

Address

Datatype | Memory area | Description

<timer>

TIMER T

Timer number, range
depends on CPU

SP <timer> starts the addressed timer when the RLO transitions from
"0" to "1". The programmed time elapses as long as RLO = 1. The timer
is stopped if, the RLO transitions to "0" before the programmed time
interval has expired. This timer start command expects the time value
and the time base to be stored as a BCD number in ACCU 1-L.

Status word

|
RLO at !
Reset Input 10.1

CCl1|CCO0| ov 0Ss OR STA | RLO /FC
writes: - - - - 0 - - 0
RLO at
Enable Input 10.2 4
Ig_-t_,l. I(_t—): 4(_I_t_l(_;t—hl =—tl—

RLO at I
Start Input ~ 10.0 J : l .|:

=
3
)
Py
o
wn
S
S)
>
(7]
®

Check Signal
State at Timer f | | |

Output Q0.0

t = programmed time interval

The maximum time that the output signal remains at 1 is the same as
the programmed time value t. The output signal stays at 1 for a shorter
period if the input signal changes to 0.

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 4

Timing Functions (Timer) and Counters

Page 4-7

Pulse Timer (SP) (continued)

Tag

| Instruction | Operand

| Comment

A
FR

=

I
T

I
KT
T

=)

=3

; Example Puls Timer - 5P

0.0
1

.

Enable Timer T1

Start Timer T1
Timer preset 5 seconds in Accu 1
Puls Timer T1

Reset signal
Reset Timer T1

Load current Timer
Transfer to Output

rvalue {T1l) into ACCU1l in binary format
word

Load current Timer
Transfer to Output

value {(T1l) into ACCULl in BCD format
word

Check signal state of Timer T1

Example Pul=s Timer - SP
T 1
I 0.1
| -
KT 500.0 — T¥ BI — 0OW 2
DE — (W 4
I 0.1 Qg 0.0
| R 0 H
Example Pul=s Timer - SP
T 1
I 0.1 — 1 -
KT 500.0 — T¥ BI — QW 2
DE — 0OW 4
I 0.1 — R 1] = Q 0.0

I
Trans Tech International© 2013

TTI

STEP® 5 S5 for Windows® Training



Page 4-8

Extended Pulse Timer (SE)

Format: SE <timer>

Timing Functions (Timer) and Counters

Chapter 4

Address Data type

Memory area

Description

<timer> TIMER

T

Timer number, range

depends on CPU

SE <timer> starts the addressed timer when the RLO transitions from
"0" to "1". The programmed time interval elapses, even if the RLO
transitions to "0" in the meantime.

The programmed time interval is started again if, the RLO transitions
from "0" to "1" before the programmed time has expired. This timer start
command expects the time value and the time base to be stored as a
BCD number in ACCU 1-L.

Status word

CCl1|CCO0| ov 0S OR STA | RLO /FC
writes: - - - - 0 - - 0
RLO at
Enable Input 10.2 I_I_t
—is
—t—> —t— =—t— et — t—
RLO at : — R e i ' '
Start Input ~ 10.0 —| L Ll m
1 1 1 1 1 - 1 | |
1 1 1 1 : 1 1 : : ! 1 |
1 1 1 1 | 1 | ! 1 ]
RLO at 1 I I o I Ly | ,
Reset Input  10.1 ' ! ! - ' ' : : : ! ! I_I
L i
I I | 1 1 1 | | I | ,
: : C : ’\"
Time Response | : ! . o !
1 1 1 I 1
1 1 ] ] 1 ) ] ! 1 1 !
check Sianal : L SR L L
eck Signa } i
State at Timer | ' | Ll : |_| | I I
Output Q0.0 T :
t = programmed time interval

The output signal remains at 1 for the programmed length of time,
regardless of how long the input signal stays at 1.

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-9

Extended Pulse Timer (SE) (continued)

Tag |Insﬂucﬁnn | Operand |Cnnunent
;: Example Extended Puls Timer - SE
A I 0.0
FR T 1 ; Enable Timer T1
A I 0.1 ; Start Timer T1
L KT 500.0 ; Timer preset 5 seconds in Accu 1
SE T 1 ; Puls Timer T1
A I 0.1 ; Beset signal
R T 1 ; Beset Timer T1

-
=
[
.

: Load current Timer wvalue {T1l) into ACCU]l in binary format

T o 2 ; Transfer to Output word
LC T 1 ; Load current Timer wvalue (T1l) into ACCU1l in BCD format
T oy 4 ; Transfer to Output word

=
o]
[
.

: Check signal state of Timer T1

Il
=
=
=]

Example Extended Puls Timer - SE

I0.1 ri
| | 1-¥
KT 500.0 — T¥ BI | — QW 2
DE | — QW 4
I0.1 Q0 0.0
|| R 9 1

Example Extended Puls Timer - SE

T 1
I 0.1 — 1L - ¥
ET 500.0 —{ T¥ BI — 0OW 2
DE — 0OW 4
I 0.1 — R 0 = Q 0.0

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-10

On-Delay Timer (SD)

Format: SD <timer>

Timing Functions (Timer) and Counters

Chapter 4

Address Data type

Memory area

Description

<timer> TIMER

T

Timer number, range

depends on CPU

SD <timer> starts the addressed timer when the RLO transitions from
"0" to "1". The programmed time interval elapses as long as RLO = 1.
The time is stopped if, the RLO transitions to "0" before the programmed
time interval has expired.

This timer start instruction expects the time value and the time base to
be stored as a BCD number in ACCU 1-L.

Status word

Output

CCl1|CCO| ov (O OR STA | RLO /[FC
writes: - - - - 0 - - 0
RLO at
Enable Input 10.2 !_I_l;
—i—>

—t—> —t— ! t—:(: t_,, —t—>
RLO at . D | ' :
Start Input ~ 10.0 _l ! l_l L i !—l—'_l_
RLO at : : B | |
Reset Input  10.1 — ' — - : I !_[
Time Response J\E : [\l ﬁ\l'\ |\1
Check Signal : ' E |

State at Timer

I

t = programmed time interval

Q0.0

STEP® 5 S5 for Windows® Training

The output signal changes to 1 only when the programmed time has
elapsed and the input signal is still 1.

TTI Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-11

On-Delay Timer (SD) (continued)

Tag | Instruction | Operand | Comment
; Example On-Delay Timer - 5D
A I 0.0
FR T 1 ; Enable Timer T1
A I 0.1 ; Start Timer T1
L KT 500.0 ; Timer preset 5 seconds in Accu 1
5D T 1 ; Puls Timer T1
A I 0.1 : Reset sigmal
R T 1 ; Reset Timer T1
L T 1 ; Load current Timer value (Tl) into ACCUl in hinary format
T oW 2 ; Transfer to Output word
LC T 1 ;: Load current Timer value {T1l) into ACCU1l in BCD format
T oW 4 ; Transfer to Output word
A T 1 : Check signal state of Timer T1
= Q0 0.0

Example On-Delay Timer - 5D

I0.1 ri
|} Ti-10
KT 500.0 —|{ T¥ BI — QW 2
DE — QW 4
I0.1 0 0.0
|| R0 1

Example On-Delay Timer - 5D

T 1
I 0.1 — T1-10
KT 500.0 —{ T¥ BI — 0OW 2
DE — 0OW 4
I 0.1 — R 0 = Q 0.0

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-12 Timing Functions (Timer) and Counters Chapter 4

Retentive On-Delay Timer (SS)

Format: SS <timer>

Address Datatype | Memory area | Description

<timer> TIMER T Timer number, range
depends on CPU

SS <timer> (start timer as a retentive ON-delay timer) starts the
addressed timer when the RLO transitions from "0" to "1". The full
programmed time interval elapses, even if the RLO transitions to "0" in
the meantime.

The programmed time interval is re-triggered (started again) if the RLO
transitions from "0" to "1" before the programmed time has expired. This
timer start command expects the time value and the time base to be
stored as a BCD number in ACCU 1-L.

Status word

cCl1|CCO|OV |OS OR STA |RLO |/FC

writes: - - - - 0 - - 0

RLO at
Enable Input 10.2

—1—

RLO at
Start Input ~ 10.0 _I .

RLO at
Reset Input  10.1

Time Response _I\E
Check Signal : ! - ; ! "
State at Timer I m F I

Output Q0.0

t = programmed time interval

The output signal changes from 0 to 1 only when the programmed time
has elapsed, regardless of how long the input signal stays at 1.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-13

Retentive On-Delay Timer (SS) (continued)

Tag |Inshucﬁnn | Operand |Cununent
; Example Retentive On-Delay Timer - 55
A I 0.0
FR T 1 ; Enabhle Timer T1
A I 0.1 ; Start Timer T1
L KT 500.0 ; Timer preset 5 seconds in Accu 1
Es T 1 ; Puls Timer T1
F.9 I 0.1 ; Reset signal
R T 1 ; BReset Timer T1
L T 1 ; Load current Timer value (T1l) into ACCUl in binary format
T w2 : Transfer to Dutpui word
LC T 1 ; Load current Timer value {T1l)} into ACCU1 in BCD format
T w4 ; Transfer to ODutput word
F.N T 1 ; Check =signal state of Timer T1
= Q 0.0

Example Retentive On-Delay Timer - 55
T 1

ID.1

| | TI-15
KT 500.0 — TW BI — QW 2

DE — QW 4

ID.1 Q 0.0

|| R0 CH

Example Retentive On-Delay Timer - 55

T 1
I 0.1 — T1-1%
ET 500.0 —| T¥ BI — 0OW 2
DE — 0OW 4
I 0.1 — R 1] = 0 0.0

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-14

Timing Functions (Timer) and Counters Chapter 4

Off-Delay Timer (SF)

Format: SF <timer>

Address | Datatype | Memory area | Description

<timer> TIMER T

Timer number, range
depends on CPU

SF <timer> starts the addressed timer when the RLO transitions from
"1"to "0". The programmed time elapses as long as RLO = 0.

The time is stopped if, the RLO transitions to "1" before the programmed
time interval has expired.

This timer start command expects the time value and the time base to
be stored as a BCD number in ACCU 1-L.

Status word

RLO at
Reset Input 10.1

Time Response

Check Signal
State at Timer
Output Q0.0

cCi1|CCo| ov (O OR STA | RLO /FC
writes: - - - - 0 - - 0
RLO at
Enablaelnput 10.2 H_E
D
RLOat T e e e et
Start Input 100 _I_I_'_I_l_l’_l T . l_! m

1

|

t = programmed time interval

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-15

Off-Delay Timer (SF) (continued)

Tag | Instruction | Operand | Comment
; Example O0FF-Delay Timer - 5SF
A I 0.0
FR T 1 ; Enable Timer T1
A I 0.1 ; Start Timer T1
L KT 500.0 ; Timer preset 5 seconds in Acou 1
SF T 1 ; Puls Timer T1
F:4 I 0.1 : Reset signal
R T 1 ; Beset Timer T1
L T 1 ; Load current Timer value (T1l) into ACCUlL in hinary format
T oW 2 ; Transfer to Output word
LC T 1 ; Load current Timer value (T1l) into ACCU1l in BCD format
T oW 4 ; Transfer to Output word
A T 1 ; Check signal state of Timer T1
= Qg 0.0

Example O0FF-Delay Timer - SF
T 1

I 0.1

| | ol-1T
KT 500.0 — TW BI — QW 2

DE — QW 4

I 0.1 Q 0.0

|| R0 CH

Example OFF-Delay Timer - SF

T 1
I 0.1 —{ o1-1T
ET 500.0 —| T¥ BI — 0OW 2
DE — 0OW 4
I 0.1 — R 1] = 0 0.0

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-16 Timing Functions (Timer) and Counters Chapter 4

Selecting the right Timer

The following overview should help you to select the right timer for your
timing application.

RLO at Start Input 10.0 __|
Pulse Timer SP
Output Q0.0 — |
[ S t >
Extended Pulse Timer SE
Output Q00 ___
le t >|
On- Delay Timer SD
Output Q0.0 .
le— t—>!
Retentive On-Delay Timer SS
Output Q0.0 |
l€ t >
OFF-Delay Timer SF
Output Q0.0 |
le— {—!
t = programmed time interval

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-17

Practice Exercise 4-1; Flashing Light

A flashing light with an ON time of 1 second and an OFF time of 0.5
second needs to be programmed. The ON time and the OFF time
should be separately adjustable.

10.0 4 B
T - 3 //—L Q0.0
— = Blinking Output

T2 //f |

Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-18 Timing Functions (Timer) and Counters Chapter 4

Practice Exercise 4-2; Traffic Light

A pedestrian crossing light needs to be controlled. If a pedestrian
pushes the "Walk" button, the traffic light should be switched to "Red" for
the cars and "Green" for the pedestrian crossing light.

The yellow phase for the automobiles should be 3 seconds and the red
phase 8 seconds. The pedestrians have a green phase of the 5
seconds. The automobiles should have a green phase from at least 4

seconds.

Comment Operands
Push button "Walk" 10.0
Red light Automobiles Q0.0
Green light Automobiles Q0.2
Yellow light Automobiles Q0.1
Red light Pedestrian Q0.3
Green light Pedestrian Q0.4
Time Value for Timer T1 3 seconds
Time Value for Timer T2 5 seconds
Time Value for Timer T3 3 seconds
Time Value for Timer T4 4 seconds
Traffic light cycle flag F10.0
Edge Flag for “Walk” F10.1
Edge Pulse “Walk” F10.2
Edge Flag for “Output T4” F10.3
Edge Pulse “Output T4” F10.4

Write a PLC program with the S5 Blocks PB10 and OBL.
Transfer of the program into the S5 TEST PLC.
Test the PLC program.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-19

Traffic Light Control

Push button "Walk"

Pulse (RLO) "Walk"

Traffic light cycle flag

T1 (Auto Yellow 1) §| Eb\l |
T2 (Pedestrian Green) _:h% \

=
T3 (Auto Yellow 2)

T4 (Auto min. Green)

Pulse (RLO) "Min. Green Auto"

i

Red_Auto _—
: I
Yellow_Auto
Green_Auto

|
|

Red_Pedestrian

|

Green_Pedestrian

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-20 Timing Functions (Timer) and Counters Chapter 4

Picture Block; Editor

Available Data Formats:

[ ]
§5 157 for Windows® - [S5 Editor : BB 1] M=
W Block Modify  Search Insert Presentation  Window Help - a X

n N / FLAH i
R (B [E 7|20 3. 12% B 5 nl]E) = <2
he!] 2= 212 =
Operand | Format |
; Traffic Light P
T 1 KT T1 Auto vellow 1 T
T 2 KT T? Pedestriands green
T 3 KT T3 Auto yellow 2
T 4 KT T4 Auto minimim green
0 0.0 KM Red Light Autos
Q0.1 KM Yellow Light Autos
Q0.2 KM Green Light Autos
0 0.3 KM Red Light Pedestriands
0 0.4 KM Green Light Pedestriands
I 0.0 KM Push Button GO
;Available Data Formats
F 0.0 KM KM 1 Bit
FY 1 KH KH 8 Bit hexadecimal {BYTE)
FW¥ 6 KH KH 16 Bit hexadezimal (WORD)
FW 8 KM KM 16 Bit Binary
FW 10 KF KF 16 Bit Decimal {-32768 to +32767)
FW 12 KS KES 16 Bit 2 CHARACTERS
FW 14 KXY KXY two (2) Byte format 123,123
FW 16 KT KT TIME Constant {16 Bit) .
FW 18 KC KC Counter format 0 - 999
FDr 20 EH EH 32 Bit hexadecimal {(DWORD)
FIr 24 KS KS 32 Bit 4 CHARACTERS
FIr 32 K K Floating Point Humber 2
) >
o Projesct saleaciad] PSH, TTI Wiachfiead

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-21

Picture Block; Status Display

Available Data Formats:

[ A
§5 1 S7 for Windows® - [S5 PLC Status : BB 1] M=
W Status Display  Block  Search  Presentation  MWindow Help - a0 X

. T o e ; B5H |
2R | 15| 1) | -2 B [0 | B0 | B | P ]| 2
*=| 22| s|rlv] & [&
~
Traffic Light =
T 1 KT 000.0 0
T 2 KT 0o0.0
T 3 KT 0o0.0
T 4 KT 0o0.0
0 0.0 EM 0
0 o0.1 EM 1
0 0.2 EM 0
0 0.3 EM 1
0 0.4 EM 0
I 0.0 KM 1
:Available Data Formats
F 0.0 KM 1
FY 1 EH FF
¥ 6 EH 1248
W 8 KM 0100100110101 000
F¥ 10 EKF 4711
¥ 12 KS 'y
¥ 14 KY 171,205
¥ 16 KT 123.3
¥ 18 KC 999
FD 20 EH 123ABCDE
FD 24 KS 'TEST'
FD 32 KG 1123.46 3z
<8 >
T-(I Project sedecied PSH, TTI Mochfec] —

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-22 Timing Functions (Timer) and Counters Chapter 4

4.2 Counter Instructions

A counter is a function element of the STEP® 5 programming language
that counts. Up and Down counting is possible. Counters have an area
reserved for them in the memory of your CPU. This memory area
reserves one 16-bit word for each counter.

Counter instructions are the only functions with access to the memory
area. You can vary the count value within this range by using the
following Counter instructions:

e FR Enable Counter (Free)

e L Load Current Counter Value into ACCU 1

e LC Load Current Counter Value into ACCU 1 as BCD
e R Reset Counter

e S Set Counter Preset Value

e CU Counter Up

e CD Counter Down

Enable Counter FR (Free)

Format: FR <counter>

Address Datatype | Memory area | Description

<Counter> | COUNTER | C Counter, range depends on
CPU

When RLO transitions from "0" to "1", FR <counter> clears the edge-
detecting flag that is used for setting and selecting the counting direction
(up or down) of the addressed counter.

Enable counter is not required to set a counter or for normal counting.
This means that in spite of a constant RLO of 1 for the Set Counter
Preset Value, Counter Up, or Counter Down, these instructions are not
executed again after the enable.

Status word

CCi1|CCO| ov OS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-23

Example: Enable Counter FR (Free)

Tag | Instruction | Operand | Comment
Enahle Counter

A I 0.0 : Check signal state for input I 0.0
FR cC 1 ; Enahle counter €1 when RLO transitions from 0 to 1

Reset Counter R

Format: R <counter>

Address Data type Memory area | Description

<Counter> | COUNTER C Counter to be reset,
range depends on CPU

R <counter> loads the addressed counter with "0" if RLO = 1.

Status word

CCl1|CCO| oV oS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

Example:

Tag | Instruction | Operand Comment

; BReset Counter

A I 0.0 ; Check signal state for input I 0.0
R C 1 ; BReset counter €1 to a value of 0 if RLO = 1

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-24 Timing Functions (Timer) and Counters Chapter 4

Set Counter S (Preset Counter)

Format: S <counter>

Address Data type Memory area | Description

<Counter> | COUNTER |C Counter to be preset,
range depends on CPU

S <counter> loads the count from ACCU 1-L into the addressed counter
when the RLO transitions from "0" to "1". The count in ACCU 1 must be
a BCD number between "0" and "999".

Status word

CCi1|CC0O| ov OS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

Example:

Tag | Instruction | Operand Comment
; Set Counter Preset Walue

.8 I 0.0 ; Check =signal =state for input I 0.0
L KC 123 ; Load the preset value {(123) into Accul {(in BCD)
5 c 1 ; Enahle counter C1 when RLO transitions from 0 to 1

Load Current Counter Value (L) into ACCU 1in Binary Form

Format; L <counter>

Address Data type Memory area | Description

<Counter> | COUNTER C Counter range
depends on CPU

L <counter> loads the current count of the addressed counter as a
binary number into ACCU 1-L (between "0" and "999").

Status word

CCi1|CC0O| oVv OS OR | STA | RLO | /FC

writes: - - - - - - - -

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-25

Example:

|| Tag | Instruction | Operand Comment
; Load Counter Value into Accu 1

L cC 1 ; Load the momentary value of counter €1 into Accu 1 (Binary)

Counter Word Al el sl S S S S S A S e
forCounterCl|||||||||||||||

In Memory L . g

Count Value (0 to 999) in Binary

L C1
Contents of
toadmareion LT T T T T T T T T TTTTTT]
Load Instruction
|_ Cl 15 4 13 12 1 10 9 8 7 6 ) 4 3 2 1 0
822v222f2222V22222J
All “0” Count Value (0 to 999) in Binary

Load Current Counter Value (LC) into ACCU 1in BCD Form

Format; LC <counter>

Address Data type Memory area Description

<Counter> | COUNTER C Counter range
depends on CPU

LC <counter> loads the current count of the addressed counter as a
BCD number into ACCU 1-L (between "0" and "999").

Status word

CCl1|CCO| oV (ON) OR | STA | RLO | /FC

writes: - - - - - - - -

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-26 Timing Functions (Timer) and Counters Chapter 4

Example:

|| Tag | Instruction | Operand Comment
; Load Counter Value into Accu 1

L cC 1 ; Load the momentary value of counter C1 into Accu 1 (BCD)

Counter Word P2t r N2 2 22222222
forCounterC1||||||||||||||||

In Memory L ] D

Count Value (0 to 999) in Binary

Contents of

ACCUL1 af
Loadlnstrtﬁcr:tion|o|o|o|o| | | | | | | | | | |

LC cC1 215 g4 o138 Hl2 oll 50 5 98 o 96 55 oh 93 52 ol o0

LC C1
[ |

. ; A ; A y J
10° Hundreds  10' Tens 10° Ones
_ Y,

\J
Count Value (0 to 999) in BCD

Counter Up (CU)

Format: CU <counter>

Address Data type Memory area | Description
<Counter> | COUNTER |C Counter range depends
on CPU

CU <counter> increments the count of the addressed counter by 1 when
RLO transitions from "0" to "1" and the count is less than "999". When
the count reaches its upper limit of "999", incrementing stops. Additional
transitions of RLO have no effect and overflow OV bit is not set.

Status word

CCi1|CC0O| oVv OS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-27

Example:

Tag | Instruction | Operand Comment
; Set Counter Preset Value

F:9 I 0.0 ; Check signal state for input I 0.0
cu ¢ 1 ;Counter iz incremented by 1 when RLD transitions from 0 to 1

Counter Down (CD)

Format: CD <counter>

Address Data type Memory area Description

<Counter> | COUNTER C Counter range
depends on CPU

CD <counter> decrements the count of the addressed counter by 1
when RLO transitions from "0" to "1" and the count is greater than "0".
When the count reaches its lower limit of "0", decrementing stops.
Additional transitions of RLO have no effect as the counter will not count
with negative values.

Status word

cCCl1|CCO | ov oS OR | STA | RLO | /FC

writes: - - - - 0 - - 0

Example:

Tag | Instruction | Operand Comment
; Set Counter Freset Walue

A I 0.0 ; Check signal state for input I 0.0
ch L ;Counter is decremented by 1 when RLO transitions from 0 to 1

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-28

Counter (continued)

Timing Functions (Timer) and Counters

Chapter 4

Tag | Instruction | Operand | Comment
: Counter
F:9 I 0.0 ; Check signal state for input I 0.0
FR c 1 ; Enabhle counter €1 when BLO transitions from 0 to 1
F:9 I 0.1 ; Check signal state for input I 0.1
cu c 1 ;Counter is incremented by 1 when BLO transitions from 0 to 1
F:9 I 0.2 ; Check signal state for input I 0.2
D c 1 ;Counter is decremented by 1 when BLO transitions from 0 to 1
F:9 I 0.3 : Check sigmnal state for input I 0.3
L KC 123 ; Load the preset value (123) into Accul {in BCD)
s ¢ 1 ; Enable counter €1 when BLO transitions from 0 to 1
A I 0.4 ; Check siygnal state for input I 0.4
R L. ; Reset counter C1 to a value of 0 if RILO = 1
L ¢ 1 ; Load the momentary wvalue of counter €1 into Accu 1 {Binary)
T 0w 2 ; save momentary value of counter €1
LC ¢ 1 ; Load the momentary wvalue of counter €1 into Accu 1 (BCD)
T 0¥ 4 ; save momentary value of counter C1
F:4 ¢ 1 : Check signal state for conter €1 output
= 0 0.0 ; Az=zign RLO to output 0§ 0.0
Counter
c 1
I 0.1
[ | cu
I 0.2
|| cD
I 0.3
[ | s
KC 123 — ¥ DU — 0w 2
DE — oW 4
I 0.4 Q 0.0
|| R 0 _H
Counter
Cc 1
I 0.1 — CU
I 0.2 — CD
I 0.3 — 5
EC 123 — ¥ DU — OW 2
DE — 0OW 4
I 0.4 —IR 0 = Q0 0.0

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 4 Timing Functions (Timer) and Counters Page 4-29

Practice Exercise 4-3; Counter

The number of times a compressor is switched on needs to be
monitored. If the compressor is switched on, a counter should be
incremented. The input signal

| 0.0 is used to monitor the on stage of the compressor.

The number, how many times the compressor has been switched on
should be displayed in the output word QW?2.

A light should indicate if the compressor was switched on at least once
(output Q 0.0).

The input "I 0.1" resets the counter.

To understand the function of the counter better, the down count input
(10.2), the set input (I 0.3) with the set value (IW 2) should be used.

Also the second output giving the momentary value of the counter
should be displayed at an output word (QW 4).

Write a PLC program with the S5 Blocks PB10 and OBL1.
Transfer of the program into the S5 TEST PLC.

Test the PLC program.

__________________________________________________________________________________________________________________________|
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 4-30 Timing Functions (Timer) and Counters Chapter 4

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-1

5 Function Blocks (FB; FX) and Data Blocks (DB; DX)

Advanced Step 5 programming requires the use of Function Blocks in
conjunction with Data Blocks. A lot of Step 5 operations can only be
performed in Function Blocks.

5.1 Programming Function Blocks

As a rule, program blocks contain the largest portion of an application
program.

Only basic operations, however, may be programmed in these blocks.

Function blocks must be used to implement control tasks which require
supplementary operations. Function blocks are also used when a control
function (for an individual control element, for example) occurs
frequently in a program. In such cases, it is possible to make use of one
of the biggest advantages proffered by function blocks: the fact that they
can be assigned runtime parameters, i.e. when a function block is
invoked, the user may specify the operands with which it is to execute.

This can be done each time the block is called, thus enabling a block
that is present in memory only once to be used repeatedly for the same
function, but with different operands each time.

Essentially, the following characteristics distinguish function blocks from
program blocks:

e They can be programmed using the CPU's full operations set.

e Function blocks can be assigned different parameters each time
they are called.

e Function blocks have names.

These characteristics make it possible to utilize the CPU's full
capabilities. On the other hand, function blocks are not as easy to
program as, for example, program blocks.

All information included in this section applies both to "normal” function
blocks (FBs) and extended function blocks (FXs)

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-2 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Programming Function Blocks (continued).

Function Blocks (FB, FX) are made up of STEP® 5 instructions. The
PLC program or parts of the program are stored in FB’s. Especially
complex or recurring program sequences are accomplished within FB’s.
Comments may be added. The instructions may be edited and displayed
in STL, CSF, and LAD (optional).

The first segment, with the name and the identifiers, must be
programmed using STL presentation.

Note:

A Function Block (FB; FX) always have a name. The name can have up to
eight characters (A —Z and 0 —9). The only special character allowed in

the colon “:”.

Function blocks can be roughly divided into two categories: those with
and those without block parameters.

Function Blocks Without Block Parameters
Function blocks without block parameters are programmed in
essentially the same way as program blocks. The user has to enter
the name of the function block (which may comprise up to eight
characters). Programming can be continued in the "normal” way
following entry of the function block name, including statements from the
supplementary operations set.

The function block name is stored in the block header; the programmer
thus has the name at its disposal at all times. A function block header is
therefore longer than the headers of other blocks.

Function Blocks With Block Parameters
If Function Blocks are to be assigned block parameters, these must be
specified with name, parameter type and data type following entry of the
block name (see next subsection). Once all block parameters have been
entered, the user must program the control function.

It stands to reason that the block parameters (and the program) should
be carefully defined before beginning programming.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-3

Function Blocks With Block Parameters (continued).

Although it is possible to delete or insert a block parameter once a
function block has been programmed, insertions and deletions result in
renumbering of the block parameters.

Since the (MC 5) program contains only the numbers (not the names!)
of the block parameters, it is necessary, after changing the block
parameter list, to check the entire function block program to see whether
the parameter assignments are still correct. This can involve
considerable overhead.

Modifications in the parameter type and data type of block parameters
also normally necessitate a full program check.

Function block programs may also include the “Substitution
Statements”.

The programmer automatically stores the block parameter specifications
in the block header, behind the function block name. The block header
thus contains all the information the programmer requires to

o display the names of the block parameters for the purpose of
operator guidance and

e carry out an operand check during programming and initialization
of the function block.

As many as 40 block parameters may be programmed. In practice,
block parameters are normally restricted to approximately a dozen for
purposes of manageability and clarity.

Block Parameters
A block parameter is classified by its name (identifier), its parameter
type and its data type, all of which must be entered.

S5 for Windows® provides a dialog box to insert the FB / FX Formal
Operands (Block Parameters).

With this dialog box you can easily insert a formal operand parameter by
name (Declaration - DECL:), its type and its data configuration.

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-4 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Insert Formal Operand dialog box

-
E] Insert formal operands

Mame: |TEST
Type: Type for | and O: Type for [
& |nput (1] " Binamy (Bl " Binary bit pattern [KM]
" Output () " Bute [BY) " Hegadecimal [EH)
" Congtant (D) o+ whord [ " 2 Bute [KY)
" Block [B) " Double ward [D) " 2A5CI characters [KC)
£ Timer [T) " Fized point value [EF)
" Counter [C) " Time constant [KT)
" Count [KC)
" Floating paoint walue [KG]

[nzert i | Done Help

Name
In the text field enter the name of the block parameter. The name may
be up to four (4) characters long and must start with a letter. The name
is automatically entered in capital letters. The block parameter name is
identical to the formal operand specified in the program in place of the
actual operand.

Type

A marked button identifies the block parameter type. Input parameter,
output parameter and parameters representing a constant, need further
definitions.

Type for l and Q

Input and output parameters need a further definition. With the buttons
you may define if an input or output parameter represents a bit (Bl), a
byte (BY), a word (W), or a double word (D).

Type for D

A parameter representing a constant needs further definition. The value
may be presented in different forms. Mark the button to select the
required form.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-5

Insert button

If you activate the “Insert” button the defined
parameter will be entered into the function block. The
dialog box stays open and is ready to define the next parameter. Up to
forty block parameters may be defined per function block.

In=ert

Done button

If you activate the “Done” button the defined
parameter will be entered into the function block and
the dialog box will be closed.

Done

Note:

Prior to opening the dialog box Insert Formal Operand you must position
the insertion mark in a separate line directly below the line defining the
name.

Parameter type
A block parameter may be of type "I", "Q", "D", "B", "T" or "C".

o | = Input parameter

e Q = Output parameter
e D = Data

e B = Block

e T = Timer

e C = Counter

In graphic representation, parameters of type "I", "D", "B", "T" and "C"
appear at the left, parameters of type "Q" at the right of the function
symbol.

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-6 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Data type
The programmer checks the data type when the function block call is
initialized.
The following data types are permitted for parameters of type "I" or "Q":
o BI for an operand with bit address
« BY for an operand with byte address
« W for an operand with word address

e D for an operand with doubleword address
The following actual operands are permissible for data type "BI":

e | num Input
e Qnm Output
e Fnm Flag

The following actual operands are permissible for data type "BY":

« IB n Input byte

e« QOB n Outputbyte

e« FY n Flag byte

e DL n Left(i. e. high-order) data byte
« DR n Right(i. e. low-order) data byte
e« PY n Peripheral byte

« OB n Extended peripheral byte

The following actual operands are permissible for data type "W":
e IW n Inputword
e QW n Output word
e« FW n Flag word
« DW n Dataword
e« PW n Peripheral word
« OW n Extended peripheral word
e« RS n System data word
e« RT n Extended system data word
e RIn System transfer data word

e RJ n Extended system transfer data word

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-7

System data areas RS, RT, Rl and RJ can only be output if the function
block call is itself within a function block. System data areas RT and RJ
are only available with all CPUs.

The following actual operands are permissible for data type "D":
e ID n Input double word
e QD n Output double word
e« FD n Flag double word
« DD n Datadouble word

The following data types are permissible for block parameters of
type “D”:

e KM Binary constant (16 digits)
e KH Hexadecimal constant (max. 4 digits)

e KY Two one-byte absolute values, each in the range 0 to 255,
separated from one another by a comma

e KS Character constant (max. 2 alphanumeric characters)
e KF  Fixed-point number in the range -32 768 to +32 767
e KT  Time constant (BCD) with time base 1.0...999.3

e KC Count constant (BCD) in the range 0...999

e KG Floating-point number in the range + 1.701411 x10+*3®

No data type specification is permitted for block parameters of type “B”
The following actual operands are permissible:

« DB n Data blocks; the C DBn statement is executed
e FB n Function blocks (without parameter list)
e PB n Program blocks
e« SB n Sequence blocks
All blocks are called unconditionally (JU...n).

No data type specification is permitted for block parameters of type “T".
Only the T (Timer) operand is allowed when initializing called function
blocks.

No data type specification is permitted for block parameters of type “C”.
Only the C (Counter) operand is allowed when initializing called function

blocks.

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-8

Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Block Parameters (Formal Operands) defined in a FB

-
55 1 57 for, Windows® - example math instructions - [S5 Editor : FB 10 ***]

[l Elock Modify Search Insert Presentation ‘Wwindow Help - 8 x
L Segment1/1 22 =
Tag | Instruction | Operand | Comment
; Formal Operans insertes with dialog box -~
HAME : FRM:0P:1
DECL: IHBI IBI ; Input parameter for an operand with bhit address
DECL: IHBY IBY ; Input parameter for an operand with byte address
DECL: IHW I ; Input parameter for an operand with word address
DECL: IHD In ; Input parameter for an operand with doubleword address
DECL: O0TBI QBT ; ODutput parameter for an operand with hit address
DECL: O0TBY QBY ; ODutput parameter for an operand with bhyte address
DECL: ouTw o ; ODutput parameter for an operand with word address
DECL: ouTD 11 1] ; ODutput parameter for an operand with doubleword address
DECL: DAEM DEM ; Data Binary constant (16 digits)
DECL: DAEH DEH ; Data Hexadecimal constant (max. 4 digits)
DECL: DAKY DEY ; Data Two one-hyte absolute values, each in range 0 to 255
DECL: DAES DES ; Data Character constant (max. 2 alphanumeric characters)
DECL: DAEF DEF ; Data Fixed-point number in the range —32 768 to +32 767
DECL: DAKT DKT ; Data Time constant {(BCD) with time base 1.0 to 999.3
DECL: DAEC DEC ; Data Count constant (BCD) in the range 0...999
DECL: DAKG DEG ; Data Floating-point number in the range *+1.701411 x 10 EX+38
DECL: BEL B : Block
DECL: TIME T ; Timer
DECL: COUH C ; Counter
o
< >
WS g = ST s Traring USMDernpes Do Darmge Maf Fsrucions S50 PSH, TT1)

I]W Block Modify Search  Insert  Presentation  Window  Help

i)

=\ =

e

12|

A=k

c?:a\SH

T | 7 e = 62|

b

Segment 2/ 2

Call Function Block with Parameters

F 0.0

WASchulungemanugs

00000000 0QOO00OO0ODO0

000
0,0
aag
+0
000
000
0

0

.0

S B Trarirgg USANE

FB 10

I b Y T e [ A T I

INBI
INBY
INW

IHD

DAKM
DAKH
DAKY
DAKS
DAKF
DAKT
DAKC
DAKG
BEL

TIME
COUH

FEM:0P:1

0TBI (— F 0.0
O0TBY [— FY O
oUTH [— FW 0
ouTp — FD O

e EwercissExample Math nstrucions <5

PEH, TTI]

STEP® 5 S5 for Windows® Training

TTI Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-9

Calling a Function Block with Parameters (STL)

=
55 f 57 for Windows® - example math instructions - [§5 Editor : OB 1] *
W Block Modify Search  Insert  Presentakion ‘Window Help - 9 x

B | 5| 15 a7 22 3 | 220 | B0 T 100|550 | R =) 2
ﬂ Segment 2/ 2 _|J ﬂﬂ ﬂ

Tag | Instruction | Operand | Comment
; €Call Function Block with Parameters ~
aJu FB 10

HAMF : FEM:0P:1
INBI: F 0.0
INBY: FY O
INW : FW 0O

IND : FD O
OTBI: F 0.0
OTBY: FY O
OUTH : FW¥ O
OUTD : FD O
DAEM : KM 00000000 00000000
DAEKH: KH 0000

DAKY : KY 0,0
DAKS: Ks @@
DAKF : KF +0

DAKT: KT 000.0
DAKC : KC 000
DAKG : KG O

BEL : DB 0O
TIME: T O
COUN: cCo
v
L[] >

WASHuungsmanual='STW Basic Traning USAExamples ExercseiExample Math rstrucions =5 PSH, TTI Modifed

The Place holder must be replaced with the Actual Parameters to be
used in the called Function Block.

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-10 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

5.2 Data Blocks

The data blocks contain the data for the user program. A data block
comprises 256 data words. Should this prove insufficient, the data block
is changed and a new data block invoked. All operations with operand
identifier D then access the “new” data block.

An unconditional data block call (C DB or CX DX) is executed without regard
to any conditions whatsoever. All data subsequently addressed refer to this
data block. Cyclic program scanning is not interrupted, and neither the RLO
nor the contents of the accumulators are affected.

All data blocks must be “generated” before they can be used (i.e. before data
can be read from or written to them), that is to say, space must be reserved for
the data. Data blocks can be generated over the programmer or with the G
DB or GX DX operations. Attempts to access non-existent data blocks may
produce an undefined state or result in flagging of a “transfer error” (TRAP)
(“Load/Transfer Errors (OB 32").

Before data can be used, the relevant data block must be called. A data block
remains “valid” until another data block is called. If the data block is
changed within an invoked (“lower level”) block, the “new” data block
remains valid until exited, at which point the “old” data block becomes
valid again (in the “higher-level” block).

Note:

Like all other software blocks, data blocks can be up to 2048 and/or 4096
words long depending on the CPU version; however, the area that can be
addressed direct with STEP 5 operations is limited to the first 256 data words.

Calling Data Blocks
Data blocks may only be called from segments in STL presentation.

e Create a new segment by activating the commands Add New
Segment or Insert Segment from the modify menu. You may
also create a separate block.

e Select STL presentation.
e Enter C DBnnor CX DXnn.

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-11

Example:

Comparing the value in data word DW 15 in data block DB 20 and the
value in data word DW 27 in data block DB 12 and setting flag F 15.5 if they
are identical (i.e. equal).

C DB 20 Call data block DB. 20

L DW 15 Load the value in data word DW 15, data block
DB 20

DB 21 Call data block DB 21

L DW 27 Load the value in data word DW 27, data block
DB 21

I=F Compare the two data words for “equal”’

= F 15.5 Set flag F 15.5 to “1” if the comparison is true

Calling the Data Blocks DB 20 and DB 21
DB20 DB?21

e

_»| DW 15 from DB 2(

Loading the|
Data Words

DW 27 from DB 21

DW 15 1

Logic

1

T

=Y

o

(6]
Compare

DW 27

Data Block Call (DB, DX)

Segmenﬂﬂ J_| ﬂlﬂ ﬂ

Tag | Instruction | Operand | Comment
;Calling Data Blocks

C DB 10 ; Data Block Call (DE10)

CxX DX 20 ; Extended Data Block Call {DX 20)

BE

£

Ny Progjesct madectacd

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

PSH, TTI) M achifiesc]



Page 5-12 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Opening another Data Block in a called Block
Data block DB 5 is called in program block PB 5.
The program subsequently processes the data in this data block.

When program block PB 10 is called, both the jump address and the
data area valid at this address (in this case DB 5) are pushed onto the
stack.

Program block PB 10 is then executed.

Data block DB 5 is still valid at this point, and remains so until data block
DB 10 is invoked.

Data block DB 10 then remains valid until the final statement in program
block PB 10 has been processed.

Upon return to program block PB 5, both the jump address and the
address of data block DB 5 are popped from the stack, and PB 5
resumes execution using the data in DB 5.

Data block DB 10 was thus "local" to program block PB 10.

PB 5 PB 10
C DB5S ‘
T !
o o
@) @)
\ \
JU PB 10 C DB 10
T T
o0 —
A m
(@)
! |
BE BE

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-13

Creating a Data Block (DB, DX)
To create a data block, perform the following steps.

e Open a data block by activating the New Block command from
the block menu (PC or PLC block list window).

When you open a new data block, STL presentation is automatically
selected from the presentation menu (editor window).

e A data block is not divided into segments. The icons to select the
previous or next segment are not active and no block end mark
(BE) is shown.

e Enter the text as shown below (Data Block (DB, DX) prior
formatting)

IS5 Editor : DB18 == Mi[=] B3

Example - how to enter Data Words in a Data EBlock (DE 18)
ks Te' C Character Format
kHAEBCD  Hex Format
2 kKFE +0 Integer Format
3kh 123F - Hex Format
ke 0OO00000 00000000 - Bit Format

o KT 100.0 ; Timer Format

G Ky 0,0 . Byte Format

ke 123 CCounter Format

8 kG 0O Floating Point Format
KS 'S0

| | 3

To enter the data words you must follow a defined syntax.

e Spaces within data type declaration (K H is not permitted) or
within numbers (123 456) are not permitted.

e A comment after a data word that is separated by a semicolon ( ;
) is permitted.

e A separate line comment is not permitted.

e The data words are automatically (using the format command)
numbered starting with data word zero (0). If you enter numbers
(e.g. 5:) they are ignored.

e Format the data block (key F9) and save the block.

____________________________________________________________________________________________________________________________|]
TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-14 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

The formatted data will have the following form (Data Block (DB, DX)

formatted).
TS5 Editor : DB18 M=l B3
Example - how to enter Data Words in a Data Block (DE 18)
0 ks Te' . Character Format
1 kHABCD . Hex Format
2 kF +0 . Integer Format
2 kH 123F . Hex Format
4. ki 00000000 00000000 . Bit Format
o KT 100.0  Timer Format
B kY 0.0 . Byte Format
7 KC 123 . Counter Format
8 kGO . Floating Foint Format
10: kS 'S0
o | »

Changing the Data Word Format
A dialog box is provided to modify the format of a data word.

e Mark a data word.

f: KF 1 . Integer-Farmat
i KH 0000 ;. Hex-Format
a: § Bit-Format
9: KT 100.0 : Timer-Format
10: K00 ; Byte-Format
e Click Change Type in the modify menu.
e Select the new data word format by activating the desired button
and confirm the selection (OK button).
Data Word Format HE

selectthe desired Number Format.

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-15

Possible Data Word Formats (constants).

Format Limits Explanation
lower upper

KM 00000000.00000000(111211111.11111111| arbitrary bit pattern (16 bit)
KH 0000 FFFF hexadecimal code
KY 000.000 255.255 two (2) byte (address)
KS two ASCII characters, max. 24 chr. per line text format
KF - 32768 + 32767 integer (fixed point number)
KT 000.0 999.3 time value with multiplier
KC 0 999 count
KG - 1469368 - 38 +17014112 + 39 floating point value

Creating a Data Block (DB, DX) automatically

The generate data block statement may also be used to create a data
block. To do so you must write a segment as shown in the following

picture.

TS5 ¢ 37 for Windows - [S5 Editor : PE1] =] 3

lili Block bdodify Search |nsert Presentation  ‘Window Help =
= —r ! :

| Seqment1/1 =] 22

:Generating a Data Block (DB 10) automatically =
L KF +10 : Ten Data Words will be generated
G DB 10 ; This command creates Data Block DB 10
BE

=
1| | 3

| NoProjectselected  [PSH, TTI] |

The data block is generated in the internal data block area of the PLC
CPU.

Prior to the generate instruction (G DBnn or G DXnn) the number of
data words must be defined (L KF +xx).

The maximum number of data words that can be generated depends on
the CPU type (max KB 253 = 254 Data Words).

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-16 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

After executing the PLC program the data block is created. You may edit
the value or change the data type format.

S5 7 57 for Windows - s5_data block generation - [S5 Editor : DB 10] =] E3
fii Block Modify Search Insert FPresentation ‘Window Help — |5 x|

KH 0000 =
KH E200
KH 0000
KH 0600
KH 0000
KH 0300
KH 0000
KH ZEQ0
KH 0000
KH 1F00
0: KH 0000

-
4| »

| SASE-57_Manual_US4S5_Data Block generation.sbp [PSH. T

gl e AR U =

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-17

Function Block (FB) with Data Block (DB)
Example: (Maximum Value)

The maximum value entered into the PLC via an input module should be
saved. Other PLC Blocks should have access to that value any time.
The easiest way to accomplish this task is to save the “Maximum Value”
in a Data Block.

The value coming from the input module (IW 2) is compared with the
value stored in the Data Block (DB 10) (“Maximum Value”).

If the “New Value” is higher than the stored “Maximum Value” the “New
Value” is saved by replacing the previous “Maximum Value”

The current “Maximum Value” and “New Value” should be monitored
outside the Function Block (in OB1).

Function Block FB 10

=
55 1 57 for, Windows® - example, save maximum, value - [S5 Editor : FB 10]

ﬂw Block Modify Search Insert Presentation Window Help - 8 x
o e |22 | 0 | (TR || e = 22
il Segmeant1/1 & 2 ﬂ
Tag | Instruction | Operand | Comment
; Example, Save Maximm Value
HAME : MAZVALUE
C DB 10 ; Open Data Block DB 10
L DW 0 ; Load the current maximum value into the Accumlator
L Iw 2 ; Load the new value into the Accumlator
T DWW 2 ; Sarve the contents of ACCU 1 as the new value
»=F ; Compare ACCU 2 = ACCU 1 and set RLO=1 if true
BEC ; If RLO=1 return to 0B1l; if RLO=0 continue
T DY O ; Sarve the contents of ACCU 1 as the maximum value
BE
< >
WS ungsmanual ST Basic Trainng USAEcrmales ExercssiExarmple, Sade Masmun Value =5 PSH, TTI ek

Ml Block Modify Search Insert Presentation Window Help - ax
[TTTTT : k= :EI—;I]" . ﬂ:” | ‘m‘ﬁ| ,F|

Addre... | Contents | Comment

; Store Maximum Value

[IH KF +0 ; Maximum ¥alue

1: EF +0 ! Hesr Value

< >

W Echuungemanusl= ST Basic Training USAExamples Ever Gt Exampile, Senie Maximum Value =5 PEH, TTI

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-18 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

Organization Block OB 1

" | o | '-‘
55 1 57 for Windows® - example, save maximum value - [S5 Editor : 0B 1] ['L|rE|rz|
ﬂw Block Modify  Search Insert Presentation  Window Help - 8 x

) [ e o s e | D =]
B |5 15 7| 27| 20 [ 120 | 20 55| i |15 | e
[Tl Segment 1/ 1 22| e
Tag | Instruction | Operand | Comment
;Call Save Maximm Value
aou FB 10
HAME MAXVAIUE
; Display the ocurrent "Hew Value' and "Maximmm Walue'
C DE 10 ; Open Data Block DE 10
L DY O ; Load "Maximam Walue" into ACCU 1
T oW 2 ; and transfer to output QW2
L bW 2 ; Load "Hew Value" into ACCU 1
T oy 4 ; and transfer to output QWa
BE
< 3
WShuungsmarual='SIW Basic Traning USAExamples ExerceetExample, Seve Madmun Value 5o PEH,TTI

Practice Exercise 5-1; Hysteresis, Function Block with Data Block

A “Value” coming from an input module should be compared against an
“Upper Limit” and a “Lower Limit”. If the “Value” exceeds the limits, lights
should be turned on. The lights should be turned off if the “Value” is
away from the limits by the defined offset (Hysteresis).

1. Start a new project.

2. Declare the following parameters in the Data Block DB10:

-
[T1S5 1 S7 for Windows® - [55 Editor : DB 10]
lii Block Modify Search Insert Presentation MWindow Help

Address | Contents | Comment

; Data Block DE10, {(Hystere=i=)

: +29000 ; Upper Limit
+1500 : Upper Hysteresis
-31000 ; Lower Limit
+2000 : Lower Hysteresis

£

Mo Projesct sedecid] PEH, TTI)

ockfied

STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-19

3. Make a new S5 Block (Function Block FB10) and program the
logic in the Function Block.

4. Transfer of the program into the S5 TEST PLC.
5. Test the PLC program.

Upper Hysteresis

Upper Limit

Lower Limit S

Lower Hysteresis
@ Switching Point (for the lights)

S Set (light on)
R Reset (Light off)
Value W2

Upper Limit Light Q0.0

Lower Limit Light Q0.4

TTl Trans Tech International© 2013 STEP® 5 S5 for Windows® Training



Page 5-20 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

______________________________________________________________________________________________________________________|]
STEP® 5 S5 for Windows® Training TTl Trans Tech International© 2013



	Training Manual Sheet 1
	Table of Contents
	1 Basic S5 Programming
	2 Statement List Instructions Structure
	3 Bit Logic Instructions
	4 Timer and Counter
	5 Function Blocks (FB; FX) and Data Blocks (DB; DX)

